
Automatic Phase Detection and Adaptation
for an Asymmetric Multi-Core Environment

Matthew Beckler, Vinod Chandrasekaran
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

{mbeckler, vinodc}@cmu.edu

May 10, 2009

Abstract

Automatic program phase detection is used to characterize threads of execution.
Using various performance metrics such as memory-level parallelism and instruction-
level parallelism, a program thread can be assigned to the most appropriate processor
core in an asymmetric multi-core environment.

1 Introduction

With many computer architects investigat-
ing the use of asymmetric multi-core pro-
cessors, an important question arises: How
do we perform optimal scheduling of threads
in an asymmetric processing environment?.
Current scheduling concepts assume that all
processing elements are equal in ability and
quality, and use time as the primary re-
source. These simpler ideas would certainly
work in an asymmetric environment, but of-
ten a thread of execution could be limited
because it is running on a “slow” core, or
a non-demanding thread could be wasting
hardware resources by running on a “fast”
core. By characterizing each thread’s be-
havior, we can find an optimal assignment
of threads to cores, increasing overall per-

formance and decreasing unnecessary power
consumption and resource contention.

2 Background and

Related Work

Throughout the history of the microproces-
sor, Moore’s law has “provided” for a dou-
bling in the number of transistors per chip
roughly every 18 months. Along with this
exponential growth in the number of tran-
sistors, we have also seen comparable rates
of decrease in minimum feature size and in-
crease in core processor frequency. In the
past 10 years, the increases of chip frequency
appear to have stalled, with chip power and
power density limiting further increases in
clock speed. With increases in chip fre-

1

quency no longer able to satisfy the demand
for increased performance, new alternatives
must be considered.

2.1 Chip Multi-Processors

Microprocessor vendors have started using
all the extra transistors to create multiple
copies of a processor core on the same chip,
a concept called CMP (Chip Multiproces-
sor). Traditionally, in a CMP setup, all of
the processor cores on a chip are exactly the
same, which simplifies the design and test
resources required to get a product to mar-
ket. This symmetric multi-core situation is
ideal for programs that are highly paralleliz-
able, but most if not all real-world applica-
tions have serialized sections that can not be
parallelized. These important serial sections
must be run on one of the cores, while the
other cores sit idle waiting for the parallel
section of code.

One possible solution to this problem
would be to change the multi-core setup
away from having multiple identical cores on
one chip, and instead have different types
of cores on each chip. This setup could
be called an Asymmetric CMP, and would
retain the multi-threaded performance of a
symmetric CMP, but would also provide im-
proved single-thread performance for serial-
ized sections of program execution. Figure
1 shows three examples of CMP chips.

2.2 Phase Detection

As a program runs on a processor, it typi-
cally passes through different phases of exe-
cution. Each phase may have different per-
formance characteristics, and therefore dif-
ferent hardware resource requirements. If
we could detect the presence of significant
phase changes during the execution of an
application, we could adapt to the different

performance characteristics by re-allocating
the processor cores most suitable to the cur-
rent phase. The would allow us to optimize
processor performance, power usage, and re-
source availability dynamically at runtime.

Dhodapkar and Smith have a very good
survey paper comparing existing phase de-
tection techniques [1]. One very basic phase
detection technique from the same authors
[2] is the idea of tracking a program’s work-
ing set over an interval as the set of instruc-
tion addresses that were used over the course
of a window of execution. They define the
distance between the working sets of two ad-
jacent sampling intervals (i and i− 1) as:

∆i,i−1 =
||Wi ∪Wi−1|| − ||Wi ∩Wi−1||

||Wi ∪Wi−1||

Dhodapkar and Smith also developed a
“working set signature”, basically a hashing
function for instruction addresses, to have a
concise characterization of each working set,
allowing for easy comparisons between adja-
cent working sets. They found that a signa-
ture size of as few as 32 bytes was sufficient
to obtain good results in phase detection.

A technique involving BBV (Basic Block
Vectors) was introduced by Sherwood, Sair,
and Calder [3]. They defined a BBV to
be a set of counters, each of which counts
the number of times a static basic block is
entered in a given execution interval. The
BBV distance between sampling intervals (i
and i− 1) is defined as:

∆i,i−1 =
∞∑
j=0

|counti,j − counti−1,j|

3 Implementation

3.1 Phase Metrics

To simplify things, we will be characterizing
program phase behavior in terms of two met-

2

Figure 1: Different types of multi-core chips. (left) 16 small cores in a symmetric multi-
core chip. (center) 4 large cores also in a symmetric multi-core chip. (right) An asymmetric
multi-core chip with one large core and 12 small cores.

rics, MLP (memory-level parallelism) and
ILP (instruction-level parallelism):

ILP. When many nearby instructions in
an instruction stream are relatively indepen-
dent of each other, meaning they do not
have many data dependences between them,
we can say that this area of the program
shows a high level of ILP. This means that
many of these instructions can be issued and
executed in parallel to gain a performance
boost. An example of a program phase with
high ILP would be a vector array operation,
such as iteratively adding two arrays’ ele-
ments together and storing the result into
a third array, where each loop iteration is
completely independent of the previous iter-
ation. On the other hand, a program phase
that has many instructions “chained” to-
gether with data and control dependences
is considered to have a low degree of ILP.
Here, a classic example is linked-list traver-
sal, where each node of the list must be ex-
amined in order to find the pointer to the
next node in the list. Even if the code is in
a loop, it is no faster and no more paralleliz-
able than straight-line dependent code.

Program phases that have low levels of
ILP would not gain any benefit from running
on an out-of-order (OoO) processor core, be-

cause many instructions would be stalled
while waiting for previous instructions to fin-
ish. Similarly, a superscalar core would also
not provide much of a speedup compared
to an in-order core, because of the difficulty
in finding multiple independent instructions
to be issued simultaneously. In such cases,
it would be a good idea to migrate these
threads to simpler and more power efficient
in-order cores. Ideally, there would be very
little difference in observed performance for
this thread whether running on the in-order
or out-of-order core. Switching to the in-
order core would also potentially free up the
use of the relatively “nicer” out-of-order core
for another application thread, with charac-
teristics more suited to exploit the features
of the core.

We earlier made the statement that it
is preferable to run a serial section of code
(such as linked-list traversal) on a more pow-
erful core. When we measure the level of
ILP in a program phase, does a high de-
gree of ILP point to the fact that the code
can be run in parallel across several in-order
cores, or that it would benefit from running
on a powerful core? In our work, we are con-
cerned only with single-thread performance,
so a section of code in a thread with a high-

3

level of ILP would benefit from being run
on a powerful core. It is upto the user to
write parallel code in a multi-threaded fash-
ion such that it can be distributed across
cores.

MLP. In modern microprocessors, the
latency of the memory system is many orders
of magnitude slower than the processor and
L1 cache. Some cache misses can take sev-
eral hundreds of clock cycles to be serviced,
causing a tremendous amount of latency and
wasted time in the processor. Some pro-
cessors have the ability to service multiple
outstanding cache misses concurrently, and
for these processors, the amount of memory-
level parallelism can be an important factor
in the overall performance. If this type of
processor is executing a program and pro-
cesses two nearly-adjacent memory instruc-
tions that cause cache misses, then the long
delay time for the memory accesses can be
overlapped, nearly halving the amortized
stall time. With more adjacent cache misses,
the average memory access time drops fur-
ther. If a program phase has memory misses
that are spread out so that they cannot be
overlapped, then the phase has a low level
of MLP.

In most microprocessors there is the idea
of an instruction window, that consists of
all instructions that are “in flight”, as they
progress from decoding and dispatch, exe-
cuting in the functional units, and finally
re-ordering and in-order retirement at the
back-end of the processor. An instruction
window helps to keep track of the instruc-
tions’ ordering and dependencies, and par-
tially enables out-of-order execution. For
processors that have a small instruction win-
dow, a single long-latency cache miss can
cause the instruction window to fill, causing
full-window stalls until that memory request
is satisfied. A larger window would enable
more flexibility in handling cache misses. If

a program phase that is executing on a pow-
erful core (with a large instruction window)
has a low level of MLP, meaning that the
memory misses are not grouped together,
then a core with a smaller instruction win-
dow can be used without much compromise
in performance. This is because the aver-
age number of stall cycles caused by misses
would not be appreciably worse, irrespective
of the size of the instruction window of the
core it is run on.

3.2 Software Implementation
Details

For this research project, we used a full-
system, timing-accurate simulator setup
comprising Virtutech’s Simics functional
system simulator and the SimFlex project’s
Flexus architectural models. Being a full-
system simulator, Simics can simulate a
complete computer system, including main
memory, hard disks, and other peripher-
als. It allows us to run benchmarks that
require system libraries or operating sys-
tem support. The SimFlex project at CMU
created the Flexus architectural models as
a plugin to Simics to allow for more ac-
curate simulations of the processors’ inter-
nal behavior. Currently, the official Flexus
distribution only supports multi-core sys-
tems that are symmetric, with all processor
cores defined identically by the same config-
uration objects. We wanted to investigate
asymmetric multi-core environments, which
required some modifications to the Flexus
codebase. Figure 2 shows both the original,
unmodified Flexus symmetric CMP simu-
lator CMPFlex.OoO as well as the extended
and modified CMPFlex.OoO.Asym asymmet-
ric CMP simulator, which will be described
in more detail in section 3.3.

The CMPFlex.OoO processor simulator
model is an out-of-order, multi-core capable

4

simulator. Each core is actually defined as
five different sub-components:

• µArch - The microarchitecture

• µFetch - The L1I cache

• Fetch Address Generate - Fetch and
prefetch engine

• v9Decoder - Instruction decoder

• L1d - L1 data cache

Each of these components is separately
configurable, lending good flexibility to the
system. In order to move away from the
identically array-instantiated situation, we
started by separately instantiating each of
these five components for each core of our
desired asymmetric system. This broke a
large number of assumptions in the Flexus
code base, and required a large amount of
clean-up and sanitizing code to try and mold
Flexus into behaving in a new way. This
was not very efficient or particularly infor-
mative, and was not 100% error-proof. One
major source of trouble was the breakage
of the automatic memory connections and
routing. For example, port definitions are
used to define how one module connects to
another module, and can be either a single
port or an array of ports. Unfortunately, the
array of ports stops working when using sep-
arately instantiated components, so we had
to create a new Flexus module to arbitrate
between the individual cores and L2 cache.

3.3 Components Created

MemoryMux - As mentioned above, we
had to create a module to deal with memory
cache connections. We called this module
the MemoryMux, and it was placed between
the L1 caches in the L1D and µFetch and the
L2 cache connected to the memory system.

Despite being a relatively simple component,
its construction taught us a lot about the in-
ternal workings of Flexus’ memory transac-
tion model and the differences between sin-
gle ports and array ports.

MLPListener - In order to be able
to detect the amount of memory-level paral-
lelism in the current program phase we cre-
ated a new module that sits between the
L2 cache and the memory subsystem. Any
memory accesses that miss in the L2 cache
will be forwarded through the MLPListener
module, and passed on to the memory sys-
tem. The MLPListener filters and tracks the
number and distribution of L2 misses, and
tries to compute a good metric for MLP.
For a given window size (such as 1000 cy-
cles), the module keeps a counter of the total
L2 misses observed. It also tracks the cycle
number of the most recent miss, used to de-
termine the distribution of misses. Based on
experimentation and observation, we deter-
mined that the miss fulfillment latency for
main memory was approximately 265 cycles.
Using this value, we were able to roughly
compute whether or not a given L2 miss was
independent of the previous L2 miss.

Once we have a count of the total and in-
dependent L2 misses, we can plot their val-
ues, such as in Figure 3, for the benchmark
SPEC2K-ART. An important enhancement
we can do is to take the ratio of the “nearby”
or overlapping misses to the total misses.
This produces a normalized value between 0
and 1, and makes the MLP metric have the
same range and interpretation regardless of
processor or workload details.

ILPListener - While the MLP metric
can be computed by listening to the L2 cache
misses, the ILP metric requires different in-
formation. Some of this extra information
includes the instruction dependencies, which
are most easily available at the retirement
stage of the processor, as each instruction is

5

Figure 2: Flexus Processor Architectures (A) The original array-instantiated symmetric
processor CMPFlex.OoO. (B) The extended asymmetric CMPFlex.OoO.Asym processor, with
newly created components highlighted in red.

removed from the ROB (re-order buffer).

4 Experimentation and

Results

Since Flexus is unable to perform thread
migration, all of our experiments were
performed with single-threaded workloads.
Since we are striving to create metrics that
are microarchitecture-independent, we be-
lieve that using single-threaded workloads
is fair, and the results should remain valid
when considering multiple threads running
on all cores.

4.1 MLP Detection

As mentioned above, the MLPListener mod-
ule was situated between the L2 cache and
the main memory system. The module
listenes to the L2 misses, and uses their
frequency and distribution to compute the
overall MLP metric. As an example, we ran

the “SPEC2K Art” benchmark, with results
in Figure 3. The left plot shows the total
number of L2 cache misses and what portion
of those misses were non-overlapping misses.
We can see that this particular benchmark
has an initial period of high memory usage,
with very few non-overlapping misses, mean-
ing that nearly all of these misses were very
close in time, and would be a good fit with
some advanced core’s memory parallelism
features. Once this phase of high memory
use is finished, the benchmark transitions to
a low memory usage phase, with nearly no
L2 misses present.

In looking at the left plot of Figure 3, we
see that the values produced are dependent
on the both the workload and the sampling
interval. This is not ideal, as it would give
us difficulties when trying to find the best
thresholds, so we take the ratio of overlap-
ping misses to total misses in each interval.
This produces a value that is normalized be-
tween 0 and 1, and is independent of sam-
pling period and the specific workload’s total

6

Figure 3: MLP Detection - (left) Raw counts of non-overlapping and total misses for
SPEC2K-ART. (right) MLP metric of overlapping misses divided by total misses. Note
that this metric produces a value normalized between 0 and 1. Plots were smoothed with a
20-element weighted moving filter.

Figure 4: MLP Detection - (left) Raw counts of non-overlapping and total misses for
SPEC2K-BZIP2. (right) MLP metric of overlapping misses divided by total misses. Note
that this metric produces a value normalized between 0 and 1. Plots were smoothed with a
20-element weighted moving filter.

memory usage.

When we run the SPEC2K-BZIP2
benchmark, we get the data shown in Fig-
ure 4. This benchmark has several stable ar-
eas and several disorderly areas. We can see

that the metric never settles down enough to
cause a switch to a different core, and stays
on the core for low MLP threads.

Once we have a metric for MLP, we can
start using it in scheduling decisions. For

7

this example the thread can be scheduled
for an out-of-order core with a large instruc-
tion window, in order to effectively handle
and amortize the memory delay. Between
the two periods of high memory usage is a
short respite with lower MLP, and we should
set our timeout threshold to be longer than
this (and other similar delays in other bench-
marks) in order to avoid switching cores.
Only when we have detected a longer period
of low MLP should we reschedule this thread
to a core with a smaller window, as the large
window is no longer an advantage without
the intensive memory accesses. Also notice
that in the right plot, there is some noise in
the later values, producing a few bumps in
the MLP metric plot. These values should
also be ignored, as they are not indicative of
a major phase change.

5 Conclusion

While the Flexus simulator was not able to
handle thread migration, we were still able
to investigate different metrics for character-
izing phases of program execution. Detect-
ing memory-level and instruction-level par-
allelism was useful and viable for determin-
ing program phases, and gives information
valuable to the thread scheduling process.

6 Usage Instructions

Here are details and instructions on us-
ing our modified version of Flexus with
added modules. A complete distribution of
Flexus, based on the 18741 release version
is included in the attached tarball. The
original CMPFlex.OoO simulator was copied
and modified to become CMPFlex.OoO.Asym.
The three new modules are included in the
/components/ subdirectory.

Build Instructions - From the

top-level directory, simply type make

CMPFlex.OoO.Asym to build the code for
this modified simulator. If you have a multi-
core machine, you can use -j N to enable
multi-threaded compilation with N concur-
rent threads.

After the code is built, we have included
a short run script called run job.sh, which
runs the SPEC2K-art benchmark. The MLP
detector will print out messages relating to
MLP metric stability, and notices when the
phase settles down and would be a good time
to re-evaluate the core assignments.

For more information about the mod-
ified codebase as well as building and
running instructions, please see the file
18741-README.txt file inside the code dis-
tribution directory.

7 Future Work

We were recently told that even with ex-
tensive modifications, Flexus is still unable
to do thread switching without crashes and
lockups, likely due to communications be-
tween caches (probably the snooping and
coherency messages). To continue this re-
search, therefore, it would be most prudent
to switch away from using Flexus/Simics
as the simulation platform, and instead use
a different simulator. Professor Mutlu has
mentioned a couple of other simulators that
might be viable for these ideas, and we may
investigate them in the future.

Through the course of this project we
learned a great deal, both about this topic in
computer architecture, but also about work-
ing with large, legacy codebases. “Get help
early, and get help often,” was an idea we
tried to follow, and the course professor and
teaching assistants were indeed very help-
ful when we were struggling to figure out
some of the tricky and confusing features of
Flexus. We learned that it doesn’t work very

8

well to get hung-up on infrastructure, even
if infrastructure changes are a majority of
the project. We learned that documenta-
tion in all forms, from low-level function and
method comments, to high-level class and
module documentation, is a critical part of
software development, and invaluable when
others may need to read, understand, and
modify the codebase. Our experiences with
the Flexus code base have given us new re-
solve to never produce undocumented soft-
ware, lest other poor souls be left to wander
through a similarly confusing and undocu-
mented project.

If the major issues with the simulator en-
vironment are worked out, then there are
some other interesting areas of work that
would be good to investigate. Expanding
the project scope to other metrics than MLP
and ILP would be an interesting area of ex-
ploration, especially if it was possible to find
metrics that lined up more closely with the
available processor core characteristics. An-
other area of interest would be to evaluate
the actual microarchitecture independence
of all metrics, to ensure that they work just
as well regardless of the currently used core.

8 Acknowledgements

We would like to thank course professor
Onur Mutlu and the course Teaching Assis-
tants for their thoughts, help, advice, sug-
gestions, bug fixes, code samples, and gen-

eral tips. We also need to thank Ben Nowak
and Steve Thompson for their guidance as
we worked towards getting Flexus ready to
handle thread migration, and for letting us
know that it isn’t really possible to do thread
migration using Flexus without first rewrit-
ing a large part of the simulator. Eric Chung
of the ECE CALCM Group also helped us
with accounts and settings for the Scotch
cluster, which was very useful for running
Flexus simulations.

9 References

[1] Dhodapkar, A. and Smith, J. E. “Compar-
ing Program Phase Detection Techniques”,
IEEE/ACM International Symposium on
Microarchitecture, 2003.

[2] Dhodapkar, A. and Smith, J. E. “Managing
Multi-Configuration Hardware via Dynamic
Working Set Analysis”, International Sym-
posium on Computer Architecture, 2002.

[3] Sherwood, T. Sair, S., and Calder, B.
“Phase Tracking and Prediction”, Interna-
tional Symposium on Computer Architec-
ture, 2003.

[4] Hill, M.D.; Marty, M.R., “Amdahl’s Law
in the Multicore Era,” Computer , vol.41,
no.7, pp.33-38, July 2008

[5] Nagpurkar, P. et al, “Online Phase Detec-
tion Algorithms”, Proceedings of the Inter-
national Symposium on Code Generation
and Optimization, 2006

9

