Automatic Phase Detection and Adaptation

for an Asymmetric Multi-Core Environment

Introduction and Background

O Over the past 10 years, as power consumption has become the limiting
factor in further scaling processor frequency, CPU vendors have started to
use new transistors as extra cores, to facilitate parallel computing.

O Historically, all chip multi-processors (CMP) have been symmetric, with
all cores exactly the same. This simplifies the design and test phases of
production and increases parallel execution capabilities, but serialized
sections of a program can become a performance bottleneck.

O With power being a limiting factor for most processor designs, the most
power efficient CMP designs consist of low-power, simple cores. Real world
applications are difficult to completely parallelize, usually having a serial
portion that limits the overall performance.

© Using and architecture with one high-performance core and multiple low-
power cores creates an Asymmetric CMP. This type of core retains the
multi-threaded performance of a symmetric CMP, but provides improved
single-thread performance for serialized sections of program execution.

Figure 1: Symmetric and Asymmetric CMPs

Program Phase Detection

O As a program runs, it typically passes through different phases of execution.

Each phase may have different performance characteristics and therefore
different hardware resource requirements.

O If we can detect significant phase changes, we can adapt by re-allocating
suitable processor cores to the current phase. This allows us to optimize
processor performance or power consumption on-the-fly.

O Program execution information is collected over a fixed-length sampling
interval, measured in terms of instructions executed, and is compared with
similar information from the previous interval. A phase change is detectec
if the difference in value between subsequent intervals exceeds a threshold.

Our Approach:

O We can characterize program phases in terms of the degree of memory-
and instruction-level parallelism (MLP and ILP).

O We analyze a sliding window of retired instructions to detect instruction
dependencies, giving us a measure of the level of ILP in this interval.

O The degree of MLP can be detected by analyzing the frequency and

distribution of L2 cache misses, in order to detect overlapping cache misses.

Previous Work in Phase Detection:

O Sherwood et al. [1] define a Basic Block Vector (BBV) to be a set of
counters, each of which counts the number of times a static basic block is
entered in a given execution interval. The BBV distance between sampling
intervals (/ and j-1) is defined as:

O

A1 = E lcount; ; — count;_1 ;|
j=0

O Smith and Dhodapkar [2] defined a working set as the set of instructions
touched over a sampling interval. The distance between the working sets of
two adjacent sampling intervals (i and j-1) is defined as:

A . = W UW, || [[Wn W1
te—1 TW,UW,; _1]]

Matthew Beckler, Vinod Chandrasekaran

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

{mbeckler, vinodc}@cmu.edu

Implementation

O This experiment used a full-
system, timing-accurate simulator
comprised of Virtutech's Simics [4]
functional system simulator and
the Flexus architectual models.

Instruction Retirement Logic
I

ILP Detector

O Existing Flexus [5] code supports
only symmetric multi-core
environments, with all processor . . .
cores defined identically. We
extended Flexus models to allow _
unique cores in an asymmetric
setup.

P —
L2 Cache

MLP Listener

New Flexus Modules:

O To measure the amount of
memory-level parallelism, we
created a new module, the
MLP Listener. Sitting between the
L2 cache and Memory system, it
can observe all L2 cache misses.

Figure 5: Simulator Block Dlagram
O To measure the amount of

instruction-level parallelism (ILP), a new module was placed between
the processor cores and the logic for retiring instructions. This new module,
the ILP Detector, looks at the dependences between instructions.

O The introduction of asymmetric cores breaks the automatic connections
between each core and the memory hierarchy. The MemoryMux module
sits between the cores and the L2 cache, arbitrating the transfers of data
between the individual cores and the shared L2 cache.

Measurement of MLP and ILP:

O Currently, the execution stream is divided into blocks of 1000 instructions.
The MLP and ILP are calculated at the end of each block. The ideal number
of instructions in this window is still under investigation.

Switch Cores \v

Figure 6: Detection of Changing MLP

O It is very important that each of these metrics is uArch Independent,
meaning that a given piece of code will receive the same score for MLP/ILP
regardless of which core is used for testing and mesurement.

References

1 Timothy Sherwood, Suleyman Sair, and Brad Calder. "Phase Tracking and
Predlctlon" ISCA 2003.

2 Ashutosh Dhodapkar and James E. Smith. "Managing Multi-Configuration
Hardware via Dynamic Working Set Analysis"”, ISCA 2002.

3 Ashutosh Dhodapkar and James E. Smith. "Comparing Program Phase
Detection Techniques”, MICRO 2003.

4 Virtutech Simics Full-System Simulator, Version 3.0.30,
http://www.virtutech.com/

SimFlex Project's Flexus Architecture Simulator, Version 3.0.0,
http://si2.epfl.ch/~parsacom/projects/simflex/flexus.html

5

Acknowledgements

We would like to thank Professor Mutlu and the Computer Architecture Teaching Assitants for their help.
We also thank Ben and Steve for their tips and suggestions regarding the Flexus simulator.

