Computer Vision for Augmenting Reality

Matthew Beckler and Andrew Frenz
May 8, 2008

Abstract

A system for augmenting video streams with other images or video has been de-
veloped. Utilizing inexpensive digital camcorders, color-based occlusion detection, and
projective image transformations, single images or whole video streams can be overlaid
over a selected region of a larger background video stream. Matlab is used extensively
to read, process, and output video files in a variety of formats. Split-color image anal-
ysis is used to allow for the segmentation of background from obstructions, and the
overlay frame is drawn apropriately. The projective transform is used to transform the
overlay stream to fit over the marked reagion.

1 Introduction

An interesting area of Computer Vision deals with augmenting reality. Augmented reality is
a field of research that studies how the real world can be combined with computer generated
data. Usually the viewer must wear goggles or have some sort of other screen or projection
through which to view the combination of the real and virtual world. There are many differ-
ent areas of study within augmented reality and computer vision. For this project, we chose
to work on developing a system to augment reality by embedding video and images into
an environment. The idea is that certain objects in the real world would be recognized by
the computer vision system and replaced or modified with video streams. For instance, four
markers could be set up on a wall and the vision system would recognize these markers and
replace the wall contained inside the four markers with a window that has video of whatever
outdoor scene you wanted. Someone living in the inner city could create virtual windows
showing a sunny beach paradise outside.

Besides virtual windows, there are many other potential applications. For instance,
billboards in the future may be blank white. A computer vision system in the car would
recognize a billboard and would replace the white billboard as seen through the windshield
with a custom ad tailored to whomever was in the car. When a man interested in technology
is driving, the billboards would show ads for computers, palm pilots, and other products
of this category. Then when his teenage daughter takes the car out that night, the exact
same billboards would instead show her makeup and clothing ads along with whatever else



teenage girls might be interested in. These are just a couple of the applications that could
be implemented with a computer augmented reality system that recognizes certain things
in reality such as markers on a wall or a billboard outside, and replaces it with images and
video to enhance the human’s experience.

Figure 1: Project Demonstration

2 Problem Decription

For our Computer Vision project this semester, we will develop a vision system to embed
images and video within the real world environment. The natural place to start will be to
augment pre-recorded reality by editing video that has already been shot. This will allow us



to develop our routines and test out our system. Then as we progress and our augmentation
system code is optimized, we can try to implement it in real time, which is of course the
ultimate goal.

In order to tackle this problem, we will begin with simple cases and work our way up.
Our first goal is to simply place a colored sheet of construction paper on a white wall. We
will film the wall and then perform post-processing on the video to replace the rectangle
with an image. Next, we will film the same wall but with a person walking by. We will
develop code to only replace the wall with the image in the areas where the wall can be seen.
This way, when the person walks by and covers up parts of the wall, it will look like the
image is on the wall in the background and so it will be partially covered up as the person
walks by. The next step will be to do the same image augmentation but with the camera
at different angles and perhaps part of the rectange out of the view of the frame. This will
require that we scale and rotate the image so that it has the correct perspective, just like a
picture hanging on the wall would look if you looked at it from different angles. From here,
we can then replace the rectangle with video. A great application of this is to replace the
paper on the wall with a window frame and video behind it creating a virtual window in a
place where no window exists. We plan to have demonstration videos of this available in the
classroom.

Once we receive millions of dollars of funding to start a business to use this same technique
for billboard replacement, we will apply the same concept to billboard detection and replace
the billboards with custom images and video tailored to each car owner’s particular buying
habits. But we do not expect to get to this point by the end of the semester.

3 Prior Work

Using standard PC hardware, stereo cameras, and retroreflective markers, Klaus Dorfmiiller
of the AGDV Computer Graphics Center has developed a system to do autmented reality. [1]
A releated challenge with real-world camera work is the distortions caused by perspective,
with work done by Australians Shaw and Barnes [2], where they use detected lines that
converge at a common vanishing point to find transformed rectangles along coridor walls.
When dealing with the actual overlays of data onto a video stream, a number of important
issues are considered by Drascic and Milgram, including how to provide for the appearance
of proper depth and shadows to drawn images. [3] For international soccer (football) events,
many advertisers wish to target local viewers. For these purposes, Medioni et al of USC
have developed a system of real-time replacement of billboards from soccer stadiums without
requiring the cooperation of the camera operators or the billboards. [4] Many of the same
authors of [4] have also been granted a patent [5] describing the hardware and methodology
of perform their developments of [4].



4 Project Solution

We have made considerable progress towards our goals. Starting from a suggestion by the
professor, we began the project using a solid color background to define a region that we
wanted to replace with video. We decided to use a rectangular sheet of paper instead of
simply using markers. This decision was made to enhance our occlusion detection because
the color difference of objects in front of the rectangle would be greater than if the wall
color was used as the original backdrop. We first went and purchased a few large sheets of
brightly colored paper. The selection was somewhat limited but we picked out a large neon
orange sheet and a large green sheet. Next, we taped the sheets of paper to a wall and filmed
them with a video camera at different angles, with people walking in front of them, and with
varying lighting conditions.

Using the video that we captured, our next task was to configure Matlab so that we could
load and edit the video in it. The built-in Matlab routines did not have support for diverse
enough video types, but code was found on the Matlab website to be freely available that
allowed virtually any video file to be loaded into Matlab. Using this routine, we loaded the
video that we shot of the colored rectangle. This allowed us to play with the frames and
begin developing a method to detect the rectangle and augment it.

The natural way that we found to process the video was by going frame by frame through
it, converting it to an image, performing the processing and augmentation, and then con-
verting it back to a movie frame. We decided to use the first frame to detect the marked
overlay region, as a pre-processing step. From this frame we determine the parameters of the
rectangle, which are simply the locations of the four corners. We started out by using the
video of the rectangle viewed straight on and not at an angle or skew. After detecting the
rectangle in the first frame, we use the information to replace the rectangle in subsequent
frames with an image. If the frame has an occlusion, we determine the part of it that has
an object in front of it and replace the rest with the image. This way, if someone walks in
front of the rectangle, they will appear in the foreground and the image augmented into the
video will appear in the background. In order for this to work, we chose to use video shot
on a tripod so the rectangle was always in the same position in subsequent frames.

To find the rectangle in the first frame, we do thresholding on the RGB colors of the
image. We set the threshold to be a broad range around the color of the rectangle we are
trying to find. This thresholding allows us to find all of the points that are a part of the
rectangle. Then, we can simply use max and min functions on these points to determine the
four corners. These four corners give us the location of the rectangle. In order to pick out the
edges, we buffer this rectangle by 5 pixels because the edges usually show up very dark and
do not make the thresholding. When this is done, it produces a cleaner augmentation. Then,
we save these coordinates along with the pixel information for each pixel inside the rectangle.

For every subsequent frame, we concern ourselves only with the pixels inside the rectan-
gle. The first thing we do is get rid of all the other pixels by using the rectangle coordinates



P1
PO

Marked
Region

P3 P

Figure 2: Marked Points for Projective Transformation

to select those we care about. Next, we determine the Red, Blue, and Green difference of
each current pixel from the original image. We then do thresholding on these differences.
For the neon orange rectangle, we put most of the weight on the Red pixel difference. We
then look at max of the difference image and if the max is over a certain threshold, then
it means that there is an occlusion. If there are no pixels picked by this thresholding, then
there is no occlusion and we simply replace the entire rectangle with the image. If there
is an occlusion, then we replace the rectangle only in those parts whose difference is below
a certain threshold (meaning the pixels are not part of an occlusion). This produces an
augmented rectangle on the wall that shows an image different than is really there and it
even shows up in the background as people or other objects go in front of it!

The following chart shows the Red, Blue, and Green difference values plotted out over
time for a video clip where initially the frame has several stationary objects including the
colored orange rectangle then someone enters the frame, walks in front of the rectangle, and
then leaves the frame. We plotted the max difference values for each color and the plots are
color coded based on what color they represent.

There are a couple of interesting things with this plot. First of all, you can clearly see
when the occlusion occurs. From approximately frame number 60 - 80 there is a hill that
indicates huge differences in the current frame’s pixel values compared to the original frame’s
pixels. This corresponds to when the person walks in front of the colored rectangle. This
max difference plot serves as our occlusion detector. You may notice that the maximum
difference is seen in the Red color which makes complete sense since the rectangle used in
the trial was orange which shows up in the camera with a large amount of red. The other
two colors also have a significant color difference from this occlusion but not as much as the



Occlusion Detection

250

200+ A

150+

=

100+ b

0 20 40 G0 a0 100 120 140
Frame #

Max Color Difference

a0+

Figure 3: Split-channel Occlusion Plot - Example 1

red color. Another interesting thing to note from this chart is that when no object is in
front of the rectangle, there is still some difference noise. This noise is actually much greater
than we would have thought and is about 25 for blue and 10-15 for red and green. This
was a source of difficulty at first because we expected that the difference would be only a
few values when no object was in front of it and so we set our thresholds considerably too
low when looking for an occlusion. After constructing plots similar to this, we realized that
we needed to raise our threshold so that the noise of frame-to-frame with no occlusions was
eliminated. Once we did this, then our occlusion detection was much more robust.

Another example of our occlusion detection mechanism is shown in figure 4 on page 7
in a more involved example. In this sequence, there are three different occlusions and the
movie ends with a fourth occlusion.

Once again, we place the majority of the weight on the red because of the rectangle’s
color. Using thresholding on this image, we get a very definitive occlusion detection mecha-
nism. By using this fast occlusion detection scheme, we don’t have to consider the specifics
of where the occlusion is if there isn’t one detected. This of course allows us to process
many frames very fast. An interesting note here is that the blue this time has a no-occlusion
difference noise of almost 40. The video used for this plot was taken in the night-time which
probably resulted in more blue-like conditions which the video camera varied much more
than in the first example which included brighter conditions and consequently less noise in
the blue range.

We used the following method to replace the rectangle with an image (to do the actual



180 T T T T T T T
160+ f
140 H
1201 H
100
80+

60+

ES

40 g
kel e W
. L L
i
D 1 1 1 1 1 1 1
0 A0 100 150 200 280 300 380 400

Figure 4: Split-channel Occlusion Plot - Example 2

augmentation). An input image is loaded into the routine. Then after the parameters of the
rectangle are calculated in the pre-processing, this image is transformed to fit the rectangle
size and orientation. As discussed previously, we have already detected the four corners of
the parallelogram that is the overlay area. We use these four corners to transform the input
image or video stream. A routine has been developed that will scale, rotate, and otherwise
transform a source rectangular image into any regular quadrilateral, perfect for pasting into
another image. The reasoning behind development of this algorithm is that often times, the
area to be replaced is not a perfect rectangle, but rather a rectangle that has been skewed
and transformed by the angle of the camera’s view. For instance, if we desire to replace this
piece of classic artwork on the living room wall with something more interesting, such as this
vintage Star Wars movie poster, we can’t just paste the movie poster over the artwork, as the
viewing angle has transformed the art from rectangular into a more complex quadrilateral.

To perform the actual image transformation, we use the Projective Transformation, which
is a superclass of the Affine Transform[6]. The difference between these two types of trans-
formation is visible when comparing their 4 x 4 transformation matrix:

a1 G122 13 Q14

21 Q22 A23 A4

az1 Q32 Aaz3 0a34
0O 0 O 1

P11 P12 P13 Pu4
Tprojective. = P21 P22 P23 P24

P31 P32 P33 P34
L P41 P42 P43 P44

Taffine




Figure 5: Original Artwork

Figure 6: “Augmented” Artwork



Having more elements variable, the projective transformation has more freedom to ma-
nipulate images. We use the following Matlab code to create the desired transform based on
the desired input and output coordinates:

1 1 o Yo

tform = maketform Srov 1 , b
Smov Syo'u ‘Tz y2

1 Syov €3 y3

Where §,,, and S, are the dimensions of the overlay image. x; and y; are the coordinates
in the main image where the overlay should be placed. They are provided in the order de-

scribed in an image earlier in this document.

After every frame is processed, we compile the new frames to create a new movie. This
movie can then be viewed or saved to disc. After initially starting out by augmenting the
rectangle with the same image from frame to frame, we decided to tackle the issue of aug-
menting the rectangle with video. Our design for the still image turned out to be very
conducive to augmenting with video, and after some short code development we were able
to augment a rectangle with video.

To do this, we load an additional video to serve as the video to replace the rectangle.
Then, as we increment through the video frames, we increment through the second video
frames as well. Each time, we take each overlay video frame, convert it to an image, and then
do the same processing that we initially did with just the still image. This includes scaling
it and handling other changes to account for perspective. Then that individual frame of the
overlay movie is used to augment the individual frame of the main video. In this fashion we
augment the video with video. Some frames of one test video are shown to demonstrate our
augmentation.

These frame-shots of the output video demonstrate our augmentation algorithm. First
of all in the top frame set, the orange rectangle is augmented to show video of a Star Wars
space battle. The second clip set shows how when an arm is moved in front of the rectangle,
selective augmentation determines where exactly the occlusion takes place and it augments
the rectangle only where there are no occlusions so the rectangle remains in the background
as it should. The third clip set demonstrates how, when a person walks by between the
camera and rectangle, nearly all of the rectangle has an occlusion and does not show up
except for the small sections that are not obstructed by the person.

Throughout the development of this project we have encountered many different obsta-
cles. Early on we had to learn how to deal with lighting to eliminate shadows and make sure
the background was well lit. Some of our test video with shadows was a nightmare to try out
because it was impossible to distinguish between shadow and real objects. We improved our



Before and After

Original Frame Augmented Frame

Demonstration of Occlusion Detection and Selective Augmentation

video by learning how to arrange the lighting such that shadows were minimized. Another
decision we made while developing the code was to shoot the video on a tripod. Initially it
was done by hand, but this meant that the rectangle moved around constantly and as soon as
it became occluded, it was impossible to determine the exact parameters of the rectangle well
enough since if only two corners were still visible the exact size of the rectangle could not be
determined. By using a tri-pod, we could determine initially the orientation of the rectangle
by requiring the first few frames to have no occlusions. Then, we could use this information
to subsequently produce realistic partial augmentation in the presence of occlusions. A third
issue we dealt with was specific thresholding techniques and values. Many different schemes
were tried, but in the end the difference method of each pixel that we use turned out to work
the most robustly and produce the best results. We tried other schemes which looked at ab-
solute values or averaged over the rectangle, but often times the color varied drastically from
one side of the rectangle to the other which caused many problems. Another issue we have

10



Near-Complete Occlusion: Person Walking By

is with a thin orange glow appearing around occlusion objects that you may have noticed
in the images above. We have not yet fully resolved this glow although we have minimized it.

This concept of replacing a skewed rectangle with a matching skewed image was extended
to video for both the original scene and the augmentation. A rectangle was filmed at an
angle. The rectangle’s corners were detected and the augmentation video was transformed
to have the correct view angle. The following screenshot shows how a virtual paper-thin
flat monitor television was augmented into reality such that it is hanging on a door. The
virtual television is playing a light saber dual from Star Wars. Notice how the Star Wars
scene appears with the correct perspective.

This technique was also tested to the extreme. We filmed the same situation but at a

11



much more drastic angle and from low to the ground looking up. You can see that the virtual
television displays the correct perspective even from this severe viewing angle.

Another trial augmentation that was run was to see how well the system did for fast
moving thin occlusions. To test this, we filmed a rectangle head on and the subject twirled
around a meter stick in front the rectangle. A video stream was augmented in replacement
of the rectangle and occlusion detection was done so that the augmented video appeared
always in the background. The following screenshots show the results:

12



And here the meter stick was held so the thin side was facing the camera. The occlusion
detection is able to successfully pick out the thin occlusion as well as the entire arm and
hand and display it correctly.

Besides augmenting video streams into reality, this same system can also be used for
creating augmented invisible walls. To achieve invisible walls, the same technique of aug-
mentation and occlusion detection is used, but instead of any old video stream being added,
a video stream of what is behind that wall is augmented. This produces an effect as if the
viewer is looking through the wall because they see whatever is behind it. To demonstrate
this technique, we placed the rectangle on a door. This way the viewer can see what is
behind the door when it is open, and when the door is closed we can make a portion of the
door invisible to the viewer. The following screenshots show this effect.

The door looks like a normal door but then as it swings shut it, a large portion of it
becomes invisible, much like the doors with a top that opens up. The viewer can see out
the door and down the hallway despite the door being closed. There are many potential
applications for this. A high tech security system could place video cameras on the outside
of a building facing outwards from the exterior walls. A projector could then project video on
the interior walls showing the outside video. Or even better, a headset could also be worn by
a security guard so that he could walk around through the building and whenever he looked

13



at an exterior wall, his headset display would make the wall invisible and allow him to see
through it just like you can see through the door in this example. The same augmentation
technique as used here could thus be directly applied for this security application as well as
many other uses for invisible walls.

5 Conclusion

The methods developed through this research have worked admirably. We are able to detect
regions of interest and transform an image or video to be overlaid on a background video
stream. We are able to adjust for differing perspectives and appearances of the overlay
region, as well as being able to successfully handle occlusions over the overlay image. Split
color channels were used to perform occlusion detection and thresholding, which allowed us
to adjust the process to differing lighting conditions and occlusion objects. In the end, we
were able to successully add video and images to reality, such that they integrated with the
environment and had correct properties of perspective and occlusion.

6 Future Work

As noted above, future work could look at improving the reduction in edge glow around
an occluding object. We would also like to investigate techniques for detecting the desired
overlay area by using indicators other than color alone. Corner or edge markers would be a
good area to focus on, as they could potentiall be made small enough for humans not to notice
them. The use of infrared-sensitive matrials would also be a very good way to hide markers
from human eyes, as most camera CCD elements are sensitive to infrared light, invisible
to the naked eye. Another area of improvement would be to relax the tripod restriction.
We could use more advanced tracking techniques, such as using the optic flow to record the
camera’s movement relative to the wall, and to use these velocities to predict where the
camera is moving, to allow for smoother tracking. Adding an accelerometer to the camera
would allow it to use proprioceptive measurements to track it’s movement. We could use a
Kalman filter to handle the uncertainty inherent in all of these measurements to produce the
best possible estimate of camera motion. Another area of improvement would be a reduction
in the computational complexity of the method, as currently the system is not real-time. It
would be relatively simple to use the ¢ programming language instead of matlab, and custom
hardware could be developed to quickly compute the image transformations.

7 References

[1] Dorfmller, K. “Robust tracking for augmented reality using retroreflective markers”,
Computers & Graphics, 1999.

[2] “Perspective Rectangle Detection”, by David Shaw and Nick Barnes, Applications of

14



Computer Vision, Workshop at the European Conference on Computer Vision (ECCV),
May 2006.

Drascic, D, and Milgram, P. “Perceptual issues in augmented reality”, SPIE, 1996

G. Medioni, G. Guy, H. Rom, and A. Francois. Real-time billboard substitution in a
video stream. In Proceedings of the 10th Tyrrhenian International Workshop on Digital
Communications, Ischia, Ttaly, 1998. http://pollux.usc.edu/ afrancoi/pdf/ TTWDC1998-
paper.pdf

G. Medioni, G. Guy, H. Rom, ’Video Processing System for Modifying a Zone in
Successive Images’, U.S. Patent # 5,436,672, July 1995.

Weisstein, Eric W. “Affine Transformation.” From MathWorld—A Wolfram Web Re-

source. http://mathworld.wolfram.com/AffineTransformation.html

15



