Development of a Gyroscope-Free Inertial Navigation System

Matthew Beckler Project Advisor: Charles Rennolet

Department of Electrical and Computer Engineering University of Minnesota Minneapolis, Minnesota 55455

beck0778@umn.edu

May 6, 2008

Inertial Navigation System

A navigation system that uses sensors to determine and track a vehicle's position and attitude without any external references.

- Used in guided missiles, aircraft, and spacecraft.
- Traditionally use a mechanical gimbal system to maintain a reference orientation.
- GPS can be used to eliminate long-term drift.
- MEMS gryos are relatively expensive (\$30+ per axis) compared to MEMS accelerometers (\$6 for 3-axis part).
- Is it possible to track position and orientation with nothing but accelerometers?

A gimbal platform

- MEMS accelerometers carefully arranged.
- Digitize and record 50 samples per second.
- Store data to SD card.
- Prototyping board provides rigid mounting.
- Characterize each of the sensors with controlled accelerations.
- Matlab software to perform numeric integration and recover position data.

Project Progress, I: Hardware Construction

- Picture of protoboard construction.
- User interface: Switches for main power and "Enable logging"
- Added 7-segment display to provide state feedback.

Project Progress, II: Turntable Construction

- Sensors output an analog value, proportional to acceleration.
- Need to find 0g value, and conversion ratio to convert between offset from 0g reading and the actual acceleration.
- Created a rotating assembly to apply a controlled and calculable acceleration to sensors.

Project Progress, II: Turntable Construction Pictures

Project Progress, II: Turntable Construction Pictures

- To calculate acceleration, we need an accurate measure of angular velocity.
- A rolling microswitch was attached to the stationary motor, and triggered once per revolution.
- PIC processor used to measure rotation time, and report it over serial connection.

Project Progress, III: Sensor Characterization

Values in table are:

 $\frac{ADCvalue}{\left(\frac{m}{s^2}\right)}$

 0g value used to compute offset.

10.6 means $\alpha = 1 \frac{m}{s^2}$ produces a reading of 10.6 away from the 0g reading.

CALIBRATION OF Y-AXIS SENSORS			
	Y1 (522)	Y2 (523)	Y3 (511)
$\omega = 1.62 \frac{rad}{s}$	10.5953	10.6742	10.5657
$\alpha_{in} = 0.13g$	10.5600	10.6180	10.4809
$\alpha_{out} = 0.16g$	10.6112	10.6856	10.5772
	10.6388	10.7126	10.5902
	10.6094	10.6795	10.5273
$\omega = 2.92 \frac{rad}{s}$	10.6818	10.7425	10.6412
$\alpha_{in} = 0.43g$	10.6818	10.7761	10.7137
$\alpha_{out} = 0.53g$	10.7569	10.8094	10.7287
	10.7003	10.7333	10.6531
	10.7396	10.7952	10.6967
$\alpha = 1g$	10.8577	10.9682	10.7078
Mean	10.6757	10.7450	10.6257
StdDev	0.0862	0.0936	0.0831

Project Progress, IV: Real-life Accelerations

This is the raw sensor data when I walked around my house.

10 / 3

Project Progress, IV: Real-life Accelerations

We can use a filter to clean up the raw data (top) to get a smoother plot.

M. Beckler (University of MN)

May 6, 2008 11 / 3

Further Work

- Finish the MATLAB code to analyze recorded accelerations.
- Develop a decent way to visualize three-dimensional movement over time.

• Everything takes longer than estimated.

- Accurate estimation is hard.
- Don't be afraid to ask for help.
- Building things in the real world is much more difficult than simulation!
- Accomplish something worthwhile every day.

Acknowledgements / Questions

Many thanks to:

Project Advisor Professor Charles Rennolet

ECE Department

Any Questions?