
2D Simultaneous Localization And Mapping

Peter Bailey

Matthew Beckler

Richard Hoglund

John Saxton



Abstract

A common challenge for autonomous robots is the Simultaneous Localization and Mapping 

(SLAM) problem: given an unknown environment, can the robot simultaneously generate a 

map of its surroundings and locate itself in this map?  In this project, a solution to the SLAM 

problem was implemented on a Pioneer 1 robot equipped with a SICK laser scanner. 

Extended Kalman filtering was used to continuously estimate the robot's position within the 

map and the associated covariances.  Although landmark updates were not fully implemented, 

heading updates were performed using a structural compass.  Despite lacking landmark 

updates, our solution produced a reasonably accurate map of the indoor environment.



Introduction:

Autonomous robots are becoming increasingly ubiquitous. Most autonomous robots require a 

map of their surroundings and an estimate of their location within this map. It is also required 

that this map be generated autonomously. This problem is known as Simultaneous 

Localization and Mapping (SLAM). The solution to the SLAM problem employed in this 

project has three main steps: propagation, compass update, and landmark update. The 

propagation step uses a kinematic motion model with Kalman Filtering to predict the state 

and covariance of the robot  in the next time-step. Next, laser scan data is used to detect the 

walls around the robot, which can be used to improve the estimate of the robot heading. 

Finally, landmarks are detected and an Extended Kalman Filter is employed to further 

improve our state estimate.

Literature Review:

Leonard and Durrant-Whyte[1] showed that estimates of landmark positions taken by the 

same robot are correlated with each other.  This fact can be used to improve landmark 

position estimates.  Smith and Cheeseman[2] established groundwork in using noisy 

measurements to estimate relationships and covariances between objects observed from 

multiple positions.  The relationships between positions could result from the movement of a 

robot, estimated by odometry.   Thrun et. Al [3] introduced probabilistic localization and 

mapping methods sufficient to provide a reasonably accurate solution to indoor SLAM.  This 

work, combined with the Extended Kalman Filter (EKF), is the basis for this project.



The Environment:

This particular solution to the SLAM problem is designed to map indoor environments. 

Specifically, the robot is designed to map individual floors of the Electrical Engineering and 

Computer Science building. As this is an indoor environment, we can assume that walls are 

generally at right angles to each other. This makes a structural compass feasible. There are a 

number of doorways, characterized by very small corners with a door surface parallel to the 

wall surface. It is also assumed that the environment is static; the walls will not change 

positions, doorways will (hopefully) remain closed during the course of our experimental 

trials, and people will not be walking around the hallways interfering with the laser scanner.

Software Architecture

The robot application code is written in the C and C++ programming languages, and is based 

on the ARIA robotics interface. The ARIA API provides a number of convenient objects and 

methods that greatly reduce the amount of low-level programming that is required to get our 

robot up and running. As a result, we are able to focus more on the high-level system design 

and algorithm implementation.

To assist us in the matrix mathematics, we have enlisted the help of a matrix 

implementation called CwMtx. It worked acceptably, although we had to extend the class to 

add a few new class methods. One of these new methods, the printer() method, would print 

out the matrix to standard output in rows and columns, for easier debugging. Another method 

we added was the slice(int rowStart, int rowEnd, int colStart, int colEnd) method, which was 

used to extract a rectangular section of an existing matrix. This was particularly useful when 

constructing the new covariance matrix after adding a new ghost pose. A final pair of 

methods, inserthoriz(Matrix &mat, int whichCol), and insertvert(Matrix &mat, int 

whichRow), were used to paste a matrix into another matrix, which was used notability in 



adding new landmarks and ghost poses to the state vector. We did encounter some difficulties 

with the matrix library; There were difficult problems to track down when trying to store the 

result of a matrix multiplication back into the multiplicand, such as in A = A * v. We had to 

resort to using temporary matrices in these situations. Another source of frustration was the 

fact that the matrices were never initialized to zero (or any other sane value) on construction, 

and were simply left as un-initialized allocated memory.

We based our robotics code on the SickWander example application distributed with 

the ARIA framework. It uses a multi-threaded layout to enable the robot to use a handful of 

ArAction objects to provide a simple control system. We extended upon this by adding an 

ArActionGoal that will direct the robot towards a specified pose in the global coordinate 

system. This target pose is updated by the SickNavigation thread, which will be explained in a 

later section.

The main code file of our system has very little to do. It initializes the robot and the 

Sick laser, initializes the shared data, and starts the sub-application threads running. Because 

we are using a multi-threaded approach, we need a method of sharing data between the 

threads, and have utilized a relatively simple approach to data sharing and protection, that of 

storing the data in a centralized location, all protected by a common mutex. Each thread that 

is spun up is passed an instance of our argStruct, which contains pointers to the shared data, 

as well as a pointer to the mutex. It is the thread's responsibility to obtain a lock on the mutex 

before reading or writing the shared data.

We have four threads that make up our SLAM system. The first, the sickNavigation 

thread, uses the laser data to look for open areas to travel towards. It looks for regions of laser 

data with infinite distance to drive towards, but it prefers to turn to the right, producing the 

desired clockwise travel path. More details will be provided about the navigation thread later 

in this document.



The second thread that is started is the propagate thread. It runs 10 times per second, 

and is responsible for querying the ARIA system for the robot's instantaneous linear and 

rotational velocity, and computing the state and covariance propagation from these values. It 

also is responsible for periodically saving a copy of the current pose and laser data snapshot, a 

concept we call a “ghost pose”, which will be explained in more detail later on.

The third thread is the getFeatures thread, that frequently queries the Sick laser 

scanner for the current laser data, and tries to identify landmark features from the data. It 

uses the shared data system to notify the EKF update functions about the presence of new 

landmarks. The residuals and covariances of detected lines are also calculated here, for use by 

the update thread in the structural compass implementation.

The fourth and final thread that is started is the update thread. The structural compass 

resides in this thread, and the standard landmark-feature-based update function also resides 

in this thread. The shared data is monitored for flags set by the getFeatures thread that 

indicate the presence of a good line for the structural compass, or solid landmark features for 

the standard update step.

More details will be provided about all of these threads and their accomplishments in 

later sections of this document. We start first with the most basic of features, the 

sickNavigation thread that drives the robot around the hallways of the building.

Navigation

The navigation method used in this project was designed with three goals in mind: travel in a 

closed loop, avoid obstacles, and avoid entering doorways.  The robot used laser range-finder 

data and ultrasonic range-finder data to achieve these goals.

Traveling in a closed loop was accomplished by consistently taking right turns when 



possible.  By examining the laser data, the navigation algorithm was able to detect continuous 

open spaces and direct the robot toward the midpoint of the right-most such area.

The goal of avoiding obstacles was met by a simple strategy.  If the robot came too close 

to an object, the robot would slow down and turn until the object was no longer in the path of 

the robot.  In practice, this allowed the robot to avoid damaging itself by colliding with 

unexpected interferences.

If the robot were to enter an office or lab through a doorway, it may not be able to exit 

the room without operator intervention.  Thus, it was important for the robot to avoid 

entering doors.  When the navigation code detected an open area from the laser data, the 

robot would only be instructed to move toward the area if its cross-section was larger than a 

doorway.

Ghosts

The creation of a quality map is an important part of the SLAM process. There are a few 

options pertaining to the creation of a suitable map, with varying degrees of accuracy and 

computational complexity. The easiest way would be to simply log all the laser data points at 

every time-step. This produces a large amount of data, but has a few issues. When the state 

estimate is not very accurate, simply recording the estimate when the data was captured is not 

good enough. As the robot observes the world, it can make better estimates of where it is, and 

where the landmarks are. If we don't apply this improved knowledge to our saved laser scans, 

then they will be very much misaligned when we go to plot them all. A better option is to 

simply plot the estimated position of all the landmarks from the state vector at the end. While 

this uses the EKF to the fullest potential to provide the most accurate estimates of the 

landmarks, all we can plot is the landmarks themselves. In our situation, the landmarks are 



the corners of the building's walls. There is no information available about where the walls are 

if we only plot the landmarks' estimated position.

A much improved way to produce a map is to combine these two approaches. We want 

to use updated position estimates, as well as the large amount of data available from the laser 

scans. We create what we call 'ghost' landmarks in the state vector. These ghosts are basically 

just invisible landmarks that are never matched with detected landmark observations. Since 

they are fully-qualified members of the state vector and covariance matrix, they benefit from 

the update step's reduction in uncertainty and covariance. When we store a ghost pose, we 

also save a copy of the current laser data snapshot. The position of this snapshot is not fixed to 

a particular pose estimate, but rather to a specific ghost pose, that is continually refined and 

improved through the course of the exploration.

One small difference between 

ghost poses and true landmarks is the 

number of parameters that characterize 

each of these types. A ghost pose consists 

of an x, y, and phi parameter. A 

landmark consists of just an x and y 

coordinate pair, as our landmarks have 

no orientation. This has an effect on our 

propagation and update steps, as we need 

to be extra careful with the matrices. 

Another tricky area is determining how to change the state vector and covariance matrix when 

adding a new ghost pose. For the initial state, before we have seen any landmarks or stored 

any ghosts, the operation is simple, and is shown on the next page.

Construction of state vector



Here, PRR is the covariance of the robot's state with itself. When we duplicate the state 

to create a ghost pose, we can simply copy PRR to the other three positions in the new 

augmented covariance matrix. In this section, we will be using lowercase letters as subscripts 

to denote a ghost pose. Here is an illustration of adding a ghost pose where there is already a 

ghost pose present:

As we can see, the PRR sub-matrix is copied to the new blocks located at (3,3), (1,3) and (3,1). 

This is justified because, for example, the block matrix at (3,1) is the covariance between the 

third state and the first. Since, at this point in time, the third state (the new ghost pose) is 

exactly the same as the first state (the current actual state), we already know the covariance 

between these two, and it is PRR. To calculate the other two blocks, the green blocks, we realize 

that PRaR is the covariance between Ra and R, which is the same as between Ra and the new R. 

If we extend this idea one more time, to adding a ghost pose when there are two existing ghost 

poses, we have fully generalized the case of adding a ghost pose where there are existing 

ghosts, and no landmarks present:



To complicate matters, we also need to handle the case where there are landmarks 

present in our state vector and covariance matrix. The ghost poses need to fit between the 

current pose estimate and the landmark position estimates. In Matlab, this is relatively 

straightforward, but when using C++, it is much trickier to do the required matrix slicing and 

insertions. A few illustrations will help explain the situation. First again is the case of no 

existing ghost poses, with existing landmarks:

The blue block positions are simply copies of the PRR block matrix as before. For the rest of 

these steps, the changes in the current pose and ghost sections are the same as above, the only 

interesting addition is how to deal with the map information. We can simply copy PMR and PRM 

to their new homes in the purple blocks. PMM is simply copied over intact. Here are the 

extensions to one and two existing ghost poses:



Notice how PMR and PRM are copied over in much the same way as the previous example.

After implementing the addition of ghost poses to the system, a question soon arises. 

How often should we add a ghost pose? The 

answer to the question is based on a number of 

factors, including desired map resolution and the 

computing resources available on the robot. This 

figure shows what a single saved set of laser data 

looks like, with the robot drawn as a red arrow. 

The laser data points are drawn as blue dots on 

the plot. We can see that this data is from when 

the robot was facing directly down the hallway. We can even see how the laser data is more 

dense on the walls near the robot, where the laser beams are closer together, compared to the 

distance between laser readings further down the hall. We want to time the creation of ghost 

Plot of single laser data capture



poses to ensure that our laser data plots will 

overlap between successive ghost point 

snapshots. If we wait for too long between 

snapshots, we will get the type of image 

shown in the upper figure, where the laser 

data has gaps in it. There might be a 

hallway or doorway hiding in the gap in 

laser data. The data plot in Figure 3 was 

generated with 30 seconds between the 

creation of a new ghost pose. A much better 

value was found to be 15 seconds, which 

produced the second plot on this page in 

the lower figure, where the laser data is just 

barely starting to thin out when the next 

laser data is plotted. This is the value we 

chose to use for our real-world trials and 

experiments.

Regardless of all the optimizations of the propagation and update equations we 

performed, adding a large number of ghost poses to the system will definitely slow things 

down. We found in our experimentation that if we created ghost poses at a rate of 1 Hz, then 

the resulting slowdown in our propagation equations caused the propagation thread to 

propagate at a slower rate, effectively missing many of the details and magnitudes of the 

robot's motion. We saved a screen capture of a debugging data plot for one of these cases, and 

it is shown in the figure on the next page. It is easy to see how while the structural compass 

has kept the robot's heading accurate, the distance traveled is severely underestimated 

Ghost poses that are too far apart

Ghost poses that are a proper frequency



because of the reduced frequency of the propagation 

step caused by excessive processing delays from all 

the ghost poses in the state vector and covariance 

matrix. 

Propagation

Propagation is the process of using the kinematic 

model of the robot in concert with odometric 

measurements to predict the future state of the 

robot and the corresponding uncertainty in that 

prediction. Although the state of the landmarks and 

ghosts are not propagated, the covariances are. 

However, since the covariance of the 

landmarks/ghosts relative to the landmarks/ghosts 

does not change, we can employ the following optimization:

Initially, the propagation step was run at 20Hz. However, as the state vector got larger, the 

time it took to perform the propagation also increased. In fact, it eventually got to the point 

where there was not enough time to perform the propagation step in the time alloted. This led 

to a number of errors and caused the covariance matrix to increase to unreasonable values. As 

such, it was necessary to reduce the frequency of the propagation step to 10Hz, and take 

measures to ensure that the 10Hz rate was maintained, such as restricting the creation of 

ghost poses to every 15 seconds.

Propagation error due to  
computational slowdown



Update

Updates were broken up into two parts: structural compass updates and landmark updates. 

The structural compass update determined the bearing of the walls and exploited the nature 

of the environment (90 degree corners) to update the bearing of the robot. The landmark 

updates were somewhat more difficult. One of the first steps was the detection of interesting 

and reliable features. Once these were detected, the Mahalanobis distance was used to 

determine if this was a new landmark or a previously detected landmark. New landmarks are 

initialized using the standard equations provided in class. Previously detected landmarks are 

used for an EKF update. Additional information on the update step is provided in the 

following sections.

Structural Compass

In order to minimize the effects of the small angle assumptions made in the propagation and 

update steps, the heading of the robot must remain accurate.  In order to ensure this accuracy, 

the robot utilizes a structural compass to correct its orientation errors. 

The structural compass uses the lines found from the feature detection thread and 

assumes that these lines correspond to the walls of the building.  The compass chooses the 

longest line and calculates the global orientation, ɵg.

g=R

where  is the current orientation of the robot with respectϕ  

the global frame and ɵR is the orientation of the line with 

respect to the robot.  This is illustrated in the figure at right.

ɵg is expected to be within .09 radians of a multiple of 

pi/2.  If it isn't, this means that the filter has failed or the line 

corresponds to a wall that is not a multiple of pi/2 radians. 



Thus, if the ɵg is not within .09 radians of a multiple of pi/2, the second longest line will be 

used and so forth. 

The next step is to map ɵg between zero and pi so that the residual can be calculated. 

This is accomplished using the following formula.

g=g−∗ floor 
g




Once ɵg has been properly mapped between zero and pi, there are one of three different 

residual possibilities.  If ɵg is near zero, then the residual is ɵg minus zero.  If ɵg is near pi/2 

radians, then the residual is ɵg-pi/2.  Finally, if ɵg is near pi, then the residual is ɵg minus pi.

Once the residual is calculated, the covariance of the measurement, ɵg, must be 

calculated.  Since the lines are found using the Aria line finder method, Lidar data points must 

be matched to the line that was used to calculate the residual.  This is done by calculating the 

perpendicular distance between the  chosen line and all of the Lidar data points within the 

scan.  The points that are within 10 millimeters of the line are considered to be points that 

belong to the line.  Once all of the corresponding points have been found, the formulation of 

the state to measurement equation is done the in the following manner.

z i=h x i=d−d i cosg−i

zi is an inferred measurement while di and ɵi are the polar coordinates of one of the 

points that have been associated with the line.  Differentiating with respect to d and  yeildɵ  

the following H matrix.

H i
T=[1 d i sin g−i]

The covariance of the inferred measurement is found by differentiating the 

measurement function with respect to di and ɵi to obtain the relationship between the errors 

in di and ɵi and the inferred measurement.  

iT=[−cos g−i −d i sin  g−i]



This matrix is then multiplied by R from the left and the right.  R is the covariance of 

the range and bearing, which is characterized by the sick data sheet. 

Rn i =iR i i T

A least squares method is now employed to calculate the covariance of the state.

R s=∑ H i
T Rni 

−1H i 
−1

Since, this is a structural compass, the components that involve the distance standard 

deviation are not relevant.  Thus, the Rs(2,2) element is used for the covariance and is fed into 

the update portion of the structural compass along with residual that was calculated earlier. 

From now on the Rs(2,2) element will be denoted by Rc.

Now that the residual, r, and covariance, Rc , have been calculated, the structural 

update can be completed.  Along with r and Rc , compass update algorithm takes in the state 

covariance, P, the state vector, X, which is comprised of the robot state vector, Xr , ghost 

states, Xg, and state map, Xm . The structure of the state and covariance are shown below. The 

outputs are X(k+1) and P(k+1).

X =[ X R

X G

X M
]

P k =[ PRR PRG P RM

PGR PG.G PGM

PMR PMG P MM
]

The following measurement equation relates the states to the measurement.

z=g−n  

Differentiating with respect the provides the HR. 

H R=[0 0 −1 ]

Since, the measurement model is independent of  Xg and Xm, the Jacobian of the entire system 



is the following.

H=[H R 0 0]

The calculation of the covariance of the residual is rather easy because most of the entire state 

vector is zero and S is a scalar.

S=HPH TRc=H R P RR H R
TRc

The Kalman Gain is calculated in the following manner. 

K=[ K R

KG

K M
]=[P RR H R

T

PGR H R
T

PMR H R
T]S−1

The next step is to calculate the state vector at time step k+1.

X k1=X kKr

Once the state vector has been calculated, the covariance at time step k+1 is calculated.

P k1=P k −P k H
T S−1H P k =P k−

1
S [ PRR H R

T H R P RR P RR H R
T H R PRG PRR H R

T H R P RM

PGR H R
T H R P RR PGR H R

T H R PRG PGR H R
T H R PRM

PMR H R
T H R P RR PMR H R

T H R PRG PMR H R
T H R P RM

]
Feature Detection

The feature detection thread locates three different types of features.  These include  concave 

corners, convex corners, and door 

frames.  The figure to the right 

shows the different types of features 

the robot can detect.  The feature 

detection thread takes in Lidar data 

and outputs an array of feature 

objects, which is a class that 

includes x and y position, 



covariance, and a boolean that denotes whether a corner is convex or concave.  

The first step of the feature detection thread is to find all of the lines that are associated 

with the Lidar data.  In order to do this, the Aria line finder is invoked.  The appropriate 

thresholds are set such that the minimum line length is one-third of a meter, and the 

minimum number of points that can make a line is 5.  The next step is to find the corners 

associate with the Lidar data.  Corners are found using two different methods.

The first method involves looking for perpendicular lines with nearby end points.  The 

graphic to the right shows two perpendicular lines 

with endpoints that are within a proximity 

threshold from one another.  This threshold is set at 

200 millimeters.  The feature itself is the Lidar scan 

point that is closest to both line end points.

Often times, the robot is only able to detect one line that is associated with concave 

corners.  In order to detect these corners the thread loops 

through all of the lines and looks for an endpoint that 

corresponds to a sharp discontinuity in Lidar data. The 

feature detected is the Lidar scan point that is closest to the 

endpoint of the line that corresponds to the gap in the data.

Door features are found by looking for parallel lines 

that have endpoints near one another.  This is done in almost the exact same fashion as the 

perpendicular line corner finder described before.  However, in order to avoid noisy feature 

extraction, a double sided threshold is used.  If the line endpoints are separated by more than 

75 millimeters but less then 150 millimeters, the feature detection thread will mark the Lidar 

scan point that is closest to the endpoint that is closest to the robot. An example of this is 

shown in the figure to the right.



In order to make the matching easier within the 

update thread, the features are marked with boolean 

flags indicating whether a feature is a door frame, 

convex corner, or concave corner.  Upon detecting 

features with the lone endpoint to Lidar discontinuity 

method, the feature thread automatically assumes that 

this feature is a convex corner.  If the feature is 

detected using the parallel line method, the feature is considered a door frame.  However, if 

the feature is detected the using the perpendicular line method, more investigation is needed 

to see if the feature is a convex or concave corner.  This is done by analyzing the distances 

between the robot and the line endpoints.  The figure below shows the robot detecting a 

feature via the perpendicular line method in two different scenarios.  



The first scenario on the left is the robot seeing a convex corner while the second 

scenario is the robot looking at a concave corner.  The feature thread calculates dr1 and dr2, 

which are the distances between robot and the endpoints of the lines that do not correspond 

to the feature.  Then, drf is calculated which is the distance between the robot and the 

landmark.  If drf is less than both dr1 and dr2, then the feature is considered concave; 

Otherwise, it is considered convex. 

Once the features have been extracted, the covariances must be calculated.  From the 

data sheet we know the covariance of our features with respect to distance and bearing.  This 

covariance will be called R, which is shown below.  The Sick LMS 200 data sheet stated that 

the standard deviation of the distance measurement, σd , was 5 millimeters, while the standard 

deviation in bearing,  σΘ , was .01 radians.

R=[σ d
2 0
0 σ θ

2]
In order to map the covariance from local polar coordinates to local Cartesian coordinates, we 

must multiply R by the following matrix from the left and right.

G=[cos θ  −dsinθ 
sin θ dcos θ  ]

R p=GRGT

Rp along with the local Cartesian coordinates of the feature is then fed into the update thread.

Real-Time Plotting

An example of real-time visualization of laser data is shown below.  The information in the 

visualization is as follows:

● Red = current destination vector

● Yellow = structural compass lines, convex landmarks



● Blue = obstacle-free areas

● Green = terminated range measurements

● White = landmark covariance ellipses, remaining detected lines

     The real-time visualization was produced with the QuickCG graphics library.  In the 

visualization, the robot X axis is always horizontal, and the Y axis is always vertical.

Map Rendering

This project recorded estimated robot poses and laser data “snapshots” at regular intervals. 

The robot pose estimates were corrected by means of a structural compass measurement, 

discussed previously.  After the robot had finished moving in each experiment, the corrected 

estimates and their associated laser range-finder readings were written to disk in a human-

readable format.  In order to verify the correctness of the robot's pose estimates, a Matlab 

script was written to plot the saved laser data from its associated robot pose estimate.  An 



example of a resulting plot is seen here, 

which represents the laser data measured 

by the robot during a single lap of a 

rectangular building section.  The red trails 

correspond to the path of the robot, while 

blue dots correspond to detected obstacles, 

including walls, railings, and passers-by.

In another test, the robot moved one 

and a quarter loops around a rectangular 

section, resulting in the figure below.  A 

close-up of one of the corners in the map that was measured twice is seen on the next page. 

After traveling approximately 130 meters, the error in the robots pose estimate was only 

~20cm in the X and Y directions.  This corresponds to an accumulated error of 0.15% of the 

total distance traveled.



Results:

The EKF propagate function produced reasonable results. The map is shown below. Although 

the map somewhat resembles the actual environment, there is clearly a great deal of distortion 

caused by the inaccurate heading estimates.

Close-up of laser scan data

Map created using propagation only



The structural compass does an excellent job of eliminating this distortion. The map below 

closely resembles the actual environment. All corners are multiples of 90 degrees, which is to 

be expected in a well-constructed indoor environment.

The feature detection does a reasonably good job of 

detecting features. It can detect both convex and 

concave corners, along with doors. However, from time 

to time our feature detection would pick up a spurious 

landmark. A possible cause of this is the highly 

reflective metal plates on the bottom of some of the 

doors.

Concave Corners (red dots)

Map created using structural compass updates and propagation



Convex Corners (yellow dots)

The feature detector can detect  doors

The structural compass ignores walls that aren't at  
90 degree angles



Conclusion

The goal of this project was to create a robot capable of solving the 2D-SLAM problem. 

Although a true SLAM implementation did not fully come to fruition, the robot can be placed 

in an unknown indoor environment and generate a reasonably accurate map. Refined feature 

detection and a debugged EKF update step should, in theory, provide a working solution to 

the 2D-SLAM problem. Gamma values may need to be tweaked to ensure proper loop closure. 

Once the 2D-SLAM problem is solved with laser scan updates, it would be interesting to 

implement it with camera updates. A single camera can only obtain bearing measurements, 

and it is inherently noisier than a laser scanner, but the substantially lower cost makes this an 

option worth exploring.



Bibliography

[1] J. Leonard and H. Durrant-Whyte, “Simultaneous Map Building and Localization for an 

Autonomous Mobile Robot” IEEE IROS 1991, Nov. 3-5

[2] R. Smith and P. Cheeseman, “On the Representation and Estimation of Spatial 

Uncertainty” International Journal of Robotics Research, 1986

[3] S. Thrun, W. Burgard, and D. Fox, “A Probabilistic Approach to Concurrent Mapping and 

Localization for Mobile Robots” Autonomous Robots 5, 253–271, 1998

[4] S. Riisgaard and R. Blas, "SLAM For Dummies (A Tutorial Approach to Simultaneous 

Localization and Mapping)", http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-

Astronautics/16-412JSpring-2005/9D8DB59F-24EC-4B75-BA7A-

F0916BAB2440/0/1aslam_blas_repo.pdf


	Literature Review:

