
Robotics Project

Final Report

Computer Science 5551

University of Minnesota

December 17, 2007

Peter Bailey, Matt Beckler, Thomas Bishop, and John Saxton

Abstract:

A solution of the parallel-parking problem has been created to work with the

Pioneer 3 robotic system. Line detection and interpretation of SICK laser scanner

data is used to provide an accurate estimate of parking spot location. A dual-

circle navigation path approach has been implemented to execute the actual

parallel-parking maneuver.

Introduction

Parallel parking a passenger vehicle is commonly held to be one of the most

difficult maneuvers regularly performed by most drivers. For many drivers, it is a

lengthy, error-prone, and time consuming task that most would rather not do. Our

challenge is to develop a method of performing a parallel parking maneuver

automatically, using a Pioneer 3 robot as our vehicle. We can extend this

knowledge gained to real-life use relieving drivers from the daily hassle of

executing the parallel parking maneuver themselves. To model the car-parking

situation, we have restricted the turning radius of our robot, as well as using two

robot-sized boxes to represent the parked vehicles defining our parking space.

Prior Work

Problem description

Our problem starts with the robot facing

down the hallway, with two boxes defining the

parking spot located along the right-hand wall.

The robot should approach the parking spot by

driving along the wall, much as a standard

passenger vehicle drives down a street. The

parking spot must be recognized and measured

by the robot, to ensure that there is enough

length and width to the parking spot for the

robot to fit. Once the location and orientation

of the parking spot has been determined, the

robot must navigate to a proper position and heading before executing the

parking maneuver. The actual parallel-parking maneuver will be performed from

just outside of the front obstacle. Our approach can be simplified into a series of

discrete steps:

1. Detection of parking spot.

2. Wall following

3. Approach Alignment

4. Execution of parking maneuver

Equipment Specifications

We are working with the Pioneer 3 mobile

robotics platform, created by ActivMedia

Robotics, shown in the image at right. Our

particular model has been outfitted with a SICK

laser scanner, capable of measuring radial

distances in a 180° arc. Using wheel encoders,

the ARIA software API tracks the robot's

position and heading as it navigates through

the environment. ARIA also provides a suite of

line detection and filtering routines that enable the SICK laser data to be directly

interpreted and converted into lines with respect to the global coordinate system.

Assumptions

In the real world, parking spots are normally well defined. In our case, we

will also ensure that the parking spot is well defined. Our robot's world will consist

of a hallway in the EECS building with parallel walls. The robot will park between

two flat-sided boxes placed adjacent to the right-hand wall. All movement and

object detection will be on a horizontal plan, at a height determined by the

mounting height of the SICK laser scanner. The boxes can be different sizes, and

at varying distances apart. The robot does not need to be initially aligned with the

wall, and it has no requirements for initial distance from the parking spot.

The Pioneer 3 robot has only two drive wheels, with a small caster wheel

behind to provide balance. This robot is holonomic, meaning the number of

controllable degrees of freedom is greater than or equal to the total number of

degrees of freedom. For this problem, movement and rotation in a plane, there

are three degrees of freedom in total, namely the x-position, y-position, and angle

of rotation. With only two wheels, we can independently control all three of these

degrees of freedom. An example of a non-holonomic robot would be a standard

car, where we are unable to independently control all three degrees of freedom.

Since the non-holonomic case is more interesting and challenging, we will be

restricting our robot to execute the parallel parking maneuver using a minimum

turning radius of 450 mm, a distance of about 18 inches.

Initial Experimental Results

This is a description of our initial work, that we developed and perfected

using the simulator. It did not work as well as hoped with the actual robot, and

was redeveloped. The new system is detailed in the next section.

The first step of the original parking algorithm is to locate straight lines.

Rather than write our own algorithm to perform this task, we used the line

detection functions built into the ARIA API. Not only does this algorithm detect

lines, but it is also intelligent enough to discard smaller lines that may not actually

correspond to a line.

The next step of our algorithm is to extract the positions of the boxes from

the line data. This is complicated by the fact that

not only will the magnitudes and angles of the

lines change as a function of position, but the

number of lines will also change. As such, the first

thing we did was come up with three possible line

configurations. When we are far away from the

parking spot, we will only see the left hand side of

the far box. We called this configuration 3. As we

approach the parking spot, the front of the far box

becomes visible. We called this configuration 2. It

is also possible that we would see the entire front

side of the far box and part of the wall. This is

called configuration 1. All three configurations are

shown in the figure to the right. This is important,

because if we know which configuration we are in,

we can find which endpoints of which lines

correspond to p0-p3 (see left hand figure).

Writing code to determine which of the three

configurations we were currently in was fairly

straightforward. Each configuration is defined by

how the lines are aligned relative to each other: it

is a function of angles, not length. Using this

observation, we can conclude that each configuration will have its own

“fingerprint.” With this is mind, one can generate a fingerprint for each

configuration and observe that each configuration has its own unique fingerprint.

Once one realizes that each configuration has its own unique fingerprint,

writing the algorithm becomes easy. One first iterates through all the lines,

generating a list consisting of the angles between each line. Next, one iterates

over this list searching for a fingerprint corresponding to one of the three

configurations we defined. If we find one, we extract the points p0-p3. If not, we

blindly drive forward, hoping that this will bring us closer to the parking spot.

This method worked perfectly in the simulator. Our algorithm correctly

identified which configuration we were in, and it provided us with accurate data

for p0-p3. We then drove to the parking spot and successfully executed the

parking maneuver. However, our algorithm rarely worked in practice. We simply

couldn't determine what configuration we were in. After some debugging, we

realized this was because we were having difficulty detecting the sides of the

boxes. This is probably a combination of us having a poor angle on the sides of

the boxes and the fact that the boxes seemed to be moderately reflective.

Regardless of the cause of the problem, we concluded that this algorithm wasn't

robust enough for our purposes and we set out to write something better.

Our Second Attempt

We concluded that if we wanted to get the robot to work properly, we

couldn't count on being able to see the far box properly. As such, we settled upon

using a method that initially only scanned the first box. In this algorithm we use

the SICK laser scanner to try to find the first box. We use the same fingerprint

principle to try to find the first box. Once we find the first box, we drive slightly

past it and scan for the second box. If we find a second box, we know we have

found a suitable place to park, and we get into position to execute the parking

maneuver.

Parking Maneuver

The algorithm decided upon is based on the concept that a parallel parking

procedure is comprised of two arcs of equal length by identical circles, C1 and

C2 . C1 is R distance in only the

positive y-direction from the goal

parking position. C2 is the circle

relating to the initial position whose

center is located a distance R in the

negative y direction. In both the initial

and desired positions, the line

connecting the center of the robot to its respective circle center is perpendicular

to the x-axis. The initial position begins at the center of C2 minus a distance R

in the y direction. These circles are equal in size, with radius R, the tightest

turning radius possible. In the case with a dual wheel robot a constraint was

placed on the wheels to emulated a four wheeled car with turning radius similar to

that of a physical car. For the Pioneer 3, the minimum turning radius was decided

to be 450 mm, which is slightly longer then the width of the robot.

The following assumptions are made when entering into this phase:

1. The robot is parallel to the wall and boxes.

2. The distance between the boxes is wider then the length R plus the distance

from the center of the robot to its rear.

3. The target location is known

4. dy, the y-distance from the edge of the front box to the edge of the robot is

known.

Because the position of C1

and d y is static, d y is the

only unknown. Dx must be

found to enable C1 and C2

to osculate creating a tangent

line between them. Once this

condition is accomplished the

arc procedure may begin. For

every d y there is a specific corresponding d y that places the circles in

location. The center of C1 is assumed from here on to be the origin. The

robots coordinates are then based off of this origin, plus some padding,

xrobot , yrobot . Using angle A, the angle that is part of the triangle connecting

C1 , C2 and the y-axis, trigonometry is used to obtain the distance the center

of C2 , (x1 , y1) is from the origin. Calculating C2 (x1 , y1) uses the

following equations:

sinA=
y1

2R

A=sin−1

y1

2R


cosA=
x1

2R
x1=2RcosA

Now that x1 is known, the robot is repositioned along the x-axis to align C2

For each possible configuration of the two circles, the turning point is going to

create a symmetric divide forcing the two arclengths along each circle to have the

same length. The arclength is determined using angle A through the following

equation: Arclen=R 

2
−A . The robot then uses the helper function,

moveInCircle() to move along both arclengths and into its final position. The

parameters of the function moveInCircle() are an angle, a radius, and a clockwise

boolean. It always performs movements in the backward direction because that

was all that was required within the scope of this project.

Future Work

While we have created a system to successfully parallel park our robot,

there are many areas of improvement. The foremost would be general

improvements to the algorithms we use for detection and parking. For the parking

algorithm, we used a simple dual-circle path planning algorithm, and it would be

interesting to experiment with alternative algorithms, such as a sinusoid path, or

continuously updated path planning using a PID controller. Another area for

improvement would be in the detection of the parking spot from the laser data.

Our current approach gives a reasonable amount of error, since it only uses one

reading. If we were to take multiple readings, we would be able to minimize the

error, and provide more precise positioning data.

In terms of useful features, we would like to add the ability to use the laser

scanner to watch for obstacles while we are backing up. If there were sonar

devices mounted to the rear of the robot, it would also be beneficial to use them

to detect the vehicle to the rear, to provide last-minute warnings of a collision

when backing up. Also, once a parking spot has been identified, it would be

useful, especially for a real-world agent, to use the laser scanner to identify any

obstacles in, and fully characterize the parking spot on approach. Our current

agent only uses the laser scanner initially to identify the first box, and then to

identify the second box once it has reached the first box. Gathering data during

the driving from first box to the second box would be useful, and would help

improve both our estimate of the robot's position, as well as the overall accuracy

and precision of the parking.

To finish the parallel-parking problem, it would be relatively simple to add

the ability to pull-out and leave a parking spot, using the laser scanner to identify

the dimensions of the vehicle in front of the robot. We could then calculate the

path to leave the parking space without colliding with either of the bounding

vehicles.

Currently, after executing the dual-circles maneuver to back into the parking

spot, the robot pulls forward a distance of 1/3 the total length of the parking spot,

as calculated by the laser data. This is certainly non-ideal, and it would be better

to actually calculate the best distance to pull forward, in order to leave the robot

evenly spaced between the two boxes.

Overall, our work on this project relied on a number of assumptions that

would not necessarily apply to a real-life agent in the real world. We use a very

simple algorithm to count detected lines from immediately to the right of the

robot's laser scanner, which requires that the first thing to the right of the robot's

laser arc is the right wall. If this is not the case, it will have trouble aligning to the

wall, and will be unable to identify the boxes. In the future, it would be good to

remove this restriction, perhaps by also looking to the left wall of the hallway for

alignment data.

References

1. Paromtchik, Igor E. and Laugier, Christian. “Autonomous Parallel Parking of a

Nonholonomic Vehicle”, Proceedings of the 1996 IEEE Intelligent Vehicle

Symposium.

2. Murray, Richard M. and Sastry, S. Shankar. “Nonholonomic Motion Planning:

Steering Using Sinusoids”, IEEE Transactions On Automatic Control, Vol. 38,

No. 5, May 1993.

3. Paromtchik, Igor E. and Laugier, Christian. “Automatic Parallel Parking and

Returning to Traffic Maneuvers”, Proceedings of the 1997 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

