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Abstract

In the world of electronics, no device is ideal. Inductors possess par-

asitic resistance and capacitance, and even a simple wire has a small

amount of inherent capacitance. Measurement devices, expecially oscil-

loscope probes and coaxial cables, also exhibit capacitive and resistive

effects. In this lab experiment, we investigate these small, normally in-

significant properties, that often manifest themselves at high frequencies.

1 Introduction

The oscilloscope is one of the most important tools of an electrical engineer. Like
every tool, it is not perfect, and knowing these imperfections is very important to
any user. The probes used in conjunction with the oscilloscope possess inherent
capacitance. Under normal conditions, these capacitances are inconsequential,
but very high frequency signals can be affected by this capacitance. We will
investigate the amount and arrangement of the probe capacitance. We will also
be investigating the effect of resonance in an inductor, capacitor, resistor circuit,
of both the series and parallel configurations. The effect of the quality factor
(Q) on the circuits’ bandwidth will also be touched on. Lastly, we investigate
the parasitic capacitance of a resistor, as well as the parasitic capacitance and
resistance of an inductor.
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2 Experiments

2.1 Shunt Capacitance of the Oscilloscope Probes

As with most devices, the probes of an oscilloscope have parasitic capacitance.
At high frequencies, these capacitances can have a significant effect on the signal.
Here, we try to calculate a numeric value for this capacitance using a simple
voltage divider. We are recording Vin on channel 1, and Vo on channel 2.
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Figure 1: Circuit Schematic - Section 1

We measured both the input and output voltages, which were used to cal-
culate the gain, Av = |Vo/Vin|.

Frequency Response

Frequency (kHz) Gain (V/V)
1 0.485
5 0.475

10 0.457
20 0.410
30 0.361
40 0.316
45 0.289
50 0.274

100 0.164
200 0.090
400 0.043
600 0.031
800 0.026

1000 0.021

A chart of the previous data is useful to observe the behavior of the circuit.
As you can see, this response appears to be a low-pass filter.
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Figure 2: Frequency Response of Voltage Divider

To calculate a value for the shunt capacitance, we can use the concept of
a time constant in an RC-circuit. When driven by a square wave, the output
voltage lags behind the pulse, exhibiting an exponential response, characterizd
by the time-constant. For an RC-circuit, τ = RC. The time-constant defines
how much time the output signal requires to reach 63% of the maximum output
signal. This number is based on the equation for the step response of the RC-
circuit:

v(t) = 1 − e−t/τ = 1 − e−t/(RC)

When t = RC,
v(t) = 1 − e−1 = 0.632

In figure 3, I have marked both the peak-to-peak voltage, as well as the time-
constant’s voltage. As you can see, the circuit requires 4.8µs to reach 63% of
the maximum output. For an RC-circuit, τ = RC. We know the value of R,
as it is a discrete resistor value, and we have just measured τ , so we can now
solve for the unknown capacitance. Since there are two resistances involved in
this circuit, the capacitor sees the parallel combination of the two resistances:

Req = 100KΩ||100KΩ = 50KΩ

τ = RC ⇒ C =
τ

R
=

4.8µs

50KΩ
= 96pF
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Figure 3: Measuring the Time-Constant

2.2 Series RLC Circuit

Here, we are creating an RLC circuit with a resonant frequency of 2kHz. Since
the lab manual is normally very sparse, and here, incorrect, we are going to use
a resistance of 10Ω, not 0Ω as specified. The circuit schematic is in the following
figure.

We know that R will have a value of 10Ω. Since we only have one inductor
available, with a nominal value of 100 mH, and an actual value of 99.7 mH, this
is the inductor we must use. That leaves the capacitor’s value left to be found,
which we calculate through the specified resonance frequency of 2 KHz:

fr =
1

2π
√

LC
⇒ C =

1

4π2fr
2L

=
1

4π2(2000)2 · 99.7m
= 63.52nF

Since I do not have any 63.52 nF capacitors, I must approximate this value by
combining the following capacitors, which produces an equivalent capacitance
of 60 nF.

Unfortunately, the ceramic disc capacitors we have are 50% tolerance. When
I measured the actual equivalent value of my capacitor network, I had a value
of 81.5 nF. If we use this value to recalculate the resonant frequency, we get:

fr =
1

2π
√

LC
=

1

2π
√

99.7m · 81.5n
= 1.76kHz

The oscilloscopes we have to use can measure the phase difference between the
two input signals, which is a very easy and accurate method of measuring the
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Figure 4: Circuit Schematic - Section 2
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Figure 5: Circuit Schematic - Section 2

resonant and corner frequencies. When the phase between the input and output
signals is zero, we know that we are at the resonant frequency. When the phase is
±45◦, we are at the respective corner frequencies. Using the function generator,
we vary the input frequency until we reach one of the three important points.
If we were to plot the frequency response of the RLC circuit, it would look
something like the following figure, where fr, fc1, and fc2 have been labeled.
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Figure 6: Frequency Response - Section 2

We have measured the following quanities:

Point of Interest Phase Angle (◦) Frequency (kHz)
Lower Corner Frequency (fc1) −45◦ 1.7
Resonant Frequency (fr) 0◦ 1.8
Upper Corner Frequency (fc2) +45◦ 2.0

From these values, we can calculate the quality (Q) of this circuit:

Q =
fr

|fc2 − fc1|
=

1800

260
= 7.13

We can calculated an expected value for Q, based on values of the inductance,
resistance, and resonant frequency:

Q =
2πfrL

R
=

2π · 1800 · 99.7mH

10Ω
≈ 112

The expected value of Q is nowhere near the calculated value, and we can
account for this difference with parasitic resistance. All components involved
in this circuit, from the discrete inductor and capacitors, to the breadboard
and wires, have a small amount of resistance, which affects the Q value. We
can back-substitute the experimentally found Q value into our component-based
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equation, to find the actual equivalent resistance:

Q =
2πfrL

R
⇒ 7.13 =

2π · 1800 · 99.7m

Rtotal
⇒ Rtotal = 158Ω

We can use this resistance with our known resistor value to calculate the para-
sitic resistance:

Rparasitic = Rtotal − Rdiscrete = 158Ω− 10Ω = 148Ω

We are also interested in calculating the complex impedance Zin(jω0) of this
circuit, at the resonant frequency.

Zeq = ZL + ZC + ZR = jωL +
1

jωC
+ Rtotal

= j · 1800 · 99.7m + −j · 1

1800 · 81.5n
+ 158

= 186.8 · j − 6550 · j + 158

= 158 − 6360 · j

2.3 Adjustment of Quality Factor

Often, we wish to specify a Q value for an RLC circuit, and adjust the compo-
nents to reach this specified value. Based on our previous work, we know that
the total resistance in an RLC circuit can have a drastic effect on the Q value.
Now, we use the component-based formula for Q to calculate the required total
resistance to acheive a Q value of 5:

Q =
2πfrL

R
⇒ 5 =

2π · 1800 · 99.7m

Rtotal
⇒ Rtotal = 225Ω

We know that this total resistance is composed of two sources, the discrete
resistor placed in the circuit, as well as the parasitic resistance. We have pre-
viously calculated the parasitic resistance, and we use that value to determine
the required discrete resistance to place in the circuit:

Rnew = Rtotal − Rparasitic = 225Ω− 148Ω = 77Ω

We can construct a resistor network consisting of two resistors, one of 30Ω, and
one of 47Ω. These will be placed in series to produce a total resistance of 77Ω.
Using the oscilloscope as before, measuring the phase to find the locations of
the three important points, fr, fc1, and fc2, we find the following values:

Point of Interest Phase Angle (◦) Frequency (kHz)
Lower Corner Frequency (fc1) −45◦ 1.73
Resonant Frequency (fr) 0◦ 1.90
Upper Corner Frequency (fc2) +45◦ 2.14
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Using the frequency-based formula for the Q value, we find:

Q =
fr

|fc2 − fc1|
=

1900

|2140− 1730| = 4.63

When the circuit is driven with a 2kHz square wave, we get the following
signal output:

Figure 7: Input and Output Signals

We can use the oscilloscope’s Fast Fourier Transform (FFT) feature to visu-
alize the signal spectrum of both the input and output waveforms:

Since the input is a square wave, in the frequency domain, there will be
peaks at every odd multiple of the fundamental frequency. These are the odd
harmonics of the input signal. For the 2 kHz input signal, we observe peaks in
the spectrum at 2k, 6k, 10k, etc.

Since the output is a sine wave, it should have only one component in the
frequency domain. In reality, as we can see on the trace, the signal is far from
perfect, as other harmonics have a noticable presence. If the sine wave was a
pure sine wave, we would have a large spike at the signal’s frequency, since the
fourier transform of a single sine wave is the impulse function (δ).

2.4 Resonant Frequency with Different Capacitors

Using the other capacitor values available in our laboratory kits, we experi-
mentally find the resonant frequency for capacitances of 0.001µF , 0.01µF , and
0.1µF . As in previous sections, we have used the oscilloscope’s phase angle
detection ability to simplify and the results are summarized in the following
table:
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Figure 8: Input Spectrum

Figure 9: Output Spectrum

Nominal Capacitor Value (µF ) Resonant Frequency (kHz)
0.001 15.77
0.01 4.95
0.1 1.53

To find a relationship between f0 and C, we first look at the formula relating
the two variables. It is easiest to see the desired relationship using the following
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equation:

fr =
1

2π
√

LC
≈ c

L

This is the equation for a hyperbolic graph, similar to f(x) = 1
x . If we

plot the three data points, we get a simple hyperbola in the first quadrant,
asymptotic to both axes. It may be a bit difficult to see with only three data
points, but this matches perfectly with the relation found just before
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2.5 Parallel RLC Circuit

To create a parallel RLC circuit, we use the same inductor and capacitor net-
work, since the resonant frequency does not depend on the circuit arrangement,
only the values of the inductor and capacitor. The schematic for the standard
parallel-RLC circuit is included below.

Since we only have access to voltage supples in the lab, we must emulate a
current supply with a voltage supply in series with a large resistance. Assum-
ming that the RLC circuit has very little loading effect on the source resistance,
this is a fairly good approximation. For the first circuit in this section, we are
letting the resistance of the RLC circuit be infinite, effectively creating a short
circuit, leaving us with an LC circuit.
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CLRIs

Figure 10: Circuit Schematic - Section 5 - Version A

CLVs
Rs

Figure 11: Circuit Schematic - Section 5 - Version B

If we let Rs = 100 k Ω, we can calculate the expected Q value:

Q =
Reff

2πfrL
=

100kΩ

2π · 2000 · 99.7m
= 79.8

Using the oscilloscope to measure the phase and frequency of the input and
output signals, we find the following points:

Point of Interest Phase Angle (◦) Frequency (kHz)
Lower Corner Frequency (fc1) −45◦ 1.85
Resonant Frequency (fr) 0◦ 1.98
Upper Corner Frequency (fc2) +45◦ 2.11

From these values, we can calculate the frequency-based Q:

Q =
fr

|fc2 − fc1|
=

1980

2110− 1850
= 7.61

The large difference between calculated Q (79.8) and experimental Q (7.61)
is again the parasitic resistance present all over this circuit. As in previous
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sections, we want to modify this circuit by including a resistance, with the
desired result of a Q value of 5. This new resistance will be placed in parallel with
the parasitic resitance. First, we must find what our actual value of equivalent
resistance was:

Q = 7.61 =
Reff1

2πfrL
⇒ Reff1 = 9.4KΩ

Using the same formula, we can now set Q = 5.00, and find our desired value
of Reff :

Q = 5.00 =
Reff2

2πfrL
⇒ Reff2 = 6.2KΩ

Now, we must resolve the difference between Reff1 and Reff2. We do this
by placing the new resistance in parallel with the existing circuit:

Reff = Reff,old||Rnew ⇒ 6.2KΩ = 9.4KΩ||Rnew ⇒ Rnew = 18.06kΩ

We can use resistors with nominal values of 10KΩ, 5.1KΩ, and 2.2KΩ to
produce an equivalent resistance of 17.3KΩ. We place this resistance in parallel
with the inductor and capacitor to produce the following circuit.

CLVs
Rs R

Figure 12: Circuit Schematic - Section 5 - Version C

We measure the resonant and corner frequencies much the same as we have
before:

Point of Interest Phase Angle (◦) Frequency (kHz)
Lower Corner Frequency (fc1) −45◦ 1.787
Resonant Frequency (fr) 0◦ 1.988
Upper Corner Frequency (fc2) +45◦ 2.188

Using these new frequencies, we calculate the new Q value:

Q =
fr

|fc2 − fc1|
=

1988

2188− 1787
= 4.96
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To find the admittance of this circuit at the resonant frequency, we first
calculate the impedance, and then take the inverse:

Z = ZR||ZC ||ZL = Reff

∣

∣

∣

∣

∣

∣

∣

∣

1

j2πfrC

∣

∣

∣

∣

∣

∣

∣

∣

j2πfrL = 6200||−986·j||1240·j = 2331−3003j

We calculate the admittance as 1/Z = 161µ + 207µj.

2.6 Parasitic Capacitance of Shunt Resistance

Resistors have an inherent capacitance, which may affect high frequency calcu-
lations and measurements. We build a simple voltage divider to measure this
capacitance, using nominal resistors with values of R = 1MΩ and RL = 5KΩ.

R

RL

+

-

+

-

Vi Vo

Figure 13: Circuit Schematic - Section 6

To find the capacitance fo this circuit, we want to find the frequency re-
sponse. We collect data points over a large range of frequencies, and find the -3
dB point, which is located at the corner frequency, fc. We use this, along with
the RC-circuit corner frequency equation to find the value of the capacitance.
The data we have collected is reproduced here.
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Frequency (Hz) Vin(V ) Vo(V ) Av(V/V )
100 4.00 0.050 0.013

1000 3.97 0.047 0.012
10K 3.97 0.044 0.011
50K 3.97 0.040 0.010

100K 3.97 0.038 0.009
500K 3.97 0.060 0.015

1M 4.06 0.097 0.024
1.5M 4.06 0.125 0.031
1.7M 4.06 0.131 0.032

1.75M 4.06 0.138 0.034
1.85M 4.06 0.141 0.035

2M 4.13 0.150 0.036
2.5M 4.25 0.170 0.040

3M 4.50 0.190 0.042
5M 5.50 0.250 0.045
6M 6.13 0.290 0.047
7M 6.88 0.315 0.046
8M 7.19 0.330 0.046
9M 6.88 0.300 0.044
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Figure 14: Frequency Response
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As you can see, this circuit is behaving like a high-pass filter. From the data
points, we calculate that the maximum gain is approximately 0.047. The -3 dB
point is therefore 0.047 ·0.707 = 0.033. The frequency at which the gain is 0.033
is 1.75 mHz, which is the corner frequency of the RC-circuit. We can use the
following equation:

fc =
1

2πRC

However, to which resistances and capacitances do the R and C refer to? We
must first re-draw the circuit, to include the capacitance of the resistor, as well
as the capacitance of the oscilloscope probe.

+

-

+

-

Vi Vo

R1

R2C2

C1

Figure 15: Circuit Schematic - Capacitances Included
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Here, R1 and C1 are from the 1MΩ resistor. C2 is the capacitance of the
oscilloscope probe. For the small signal analysis, we can combine the resistors in
parallel, and combine the capacitors in parallel to get the following schematic:

+

-

+

-

Vi Vo

C’

R’

Figure 16: Circuit Schematic - Combined Resistors and Capacitors

The C′ and R′ are the values used in the previous equation. We know that:

R′ = R1||R2 = 1MΩ||5KΩ = 4.97KΩ

fc =
1

2πC′R′
⇒ 1.75mHz =

1

2π · 4970 · C′
⇒ C′ = 18pF

C′ is the parallel combination of the resistor’s capacitance and the oscillo-
scope’s capacitance. Using the marked value of 15 pF for the probe’s capaci-
tance, we find that the capacitance of the shunt resistance is approximately 3
pF. This agrees with our expectations, as the parasitic capacitance of a resistor
normally has a very very small effect.

2.7 Parasitic Resitance and Capacitance of an Inductor

A simple inductor, made of a few coils of wire, has a small amount of parasitic
resitance and capacitance. We will use the following RL-circuit to investigate
the magnitude and properties of these parasitic effects. The value chosen for R
is 5.1KΩ.

+

-

+

-

Vi Vo
R

L

Figure 17: Circuit Schematic - LR-Circuit Divider
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Frequency Response Data - Section 7

Frequency (Hz) Vin(V ) Vo(V ) Av(V/V )
10 3.94 4.06 1.03
30 4.09 3.90 0.95

100 4.17 4.00 0.96
300 4.18 4.03 0.96

1000 4.19 4.06 0.97
2000 4.31 4.19 0.97
3000 4.44 4.06 0.91
5000 4.44 3.72 0.84
7000 4.50 3.34 0.74
8500 4.50 3.19 0.71

10000 4.44 2.81 0.63
15000 4.47 2.13 0.48
20000 4.48 1.69 0.38
30000 4.44 1.16 0.26
50000 4.44 0.67 0.15
70000 4.44 0.44 0.10

100000 4.44 0.23 0.05
125000 4.42 0.12 0.03
150000 4.42 0.06 0.01
175000 4.40 0.13 0.03
200000 4.46 0.21 0.05
300000 4.44 0.41 0.09
600000 4.44 0.94 0.21
900000 4.50 1.36 0.30

1000000 4.44 1.38 0.31
2000000 4.56 1.97 0.43
3000000 4.94 2.13 0.43
4000000 5.31 2.22 0.42
5000000 5.88 2.56 0.44

There is a commonly used equivalent circuit used to represent the inductor,
taking into account the parasitic resitance and capacitance. We substitute this
equivalent component into our original circuit:

Using this circuit, our goal is to find the magnitude of the inductor’s impedance,
as well as the values of L, Rw, and Cw. First, I have prepared a table and plot
of frequency versus gain across a wide angle of frequencies.

To start with, we can consider the circuit’s behavior at DC, or very low
frequency. At DC, inductors become a short circuit, and capacitors become an
open circuit. This reduces our circuit down to a simple voltage divider between
Rw and R. We measure the voltage in and voltage out to find the value ofRw:

Vo =
R

Rw + R
· Vin ⇒ Vo

Vin
= Av =

5100

5100 + Rw
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Figure 18: Frequency Response of the LR-Circuit in Section 7
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Vi Vo
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L Rw

Cw

Figure 19: Circuit Schematic - LR-Circuit with Equivalent Inductor

0.96 =
5100

5100 + Rw
⇒ Rw = 212.5Ω

We know that the resonant frequency of an RLC-circuit is given by fr =
1

2π
√

LC
. Using the frequency response data collected for this circuit, we know

that the resonant frequency is approximately 150 kHz. Unfortunately, this is not
enough information to find both the inductance and capacitance. Fortunately,
we can see that as the input frequency is increased past 105 Hz, a high-pass filter
starts to appear, which is based on the RC-circuit. We can use the fact that the
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gain at the very right side of the frequency response is 0.43 to calculate the -3
dB gain, which we find to be 0.43 ·0.707 = 0.304, which occurs at approximately
900 kHz. This is the corner frequency of the RC-circuit, enabling us to find the
value of Cw:

fc =
1

2πRCw
⇒ Cw =

1

2πfCR
=

1

2π · 900000 · (5100 + 212.5)
= 33pF

Going back to the resonant frequency equation, we can now find the value of L:

fr =
1

2π
√

LCw

⇒ L =
1

4π2f2
r C

=
1

4π2 · (150000)2 · 33pF
= 33.8mH

We would expect this value of L to be somewhere around 100 mH, since that
is the nominal value. Possible sources of error include discrepancies between
the labeled and actual capacitances of the oscilloscope leads, as well as the
capacitance inherent in the breadboards.

To find the magnitude of the impedance of the inductor, we return to our
original schematic and data tables. Since the impedance is the high-frequency
analog of resistance, we simply have a voltage divider circuit. We take our data
points, and plot R · Vi

Vo

. This will give us a chart of impedance. As you can see,
the impedance is largest right around the resonant frequency.
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Figure 20: Magnitude of Impedance - Section 7
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3 Results and Conclusion

Altogether, we have investigated both the basic operation of both parallel and se-
ries RLC circuits, as well as the effect of non-ideal equipment on high-frequency
measurements. Capacitor probes exhibit a parasitic capacitance of approxi-
mately 20 pF, while resistors have a smaller capacitance, around 3-5 pF. Induc-
tors also show a small amount of capacitance and resistance, and it is possible
to calculate the extent of each. When designing an RLC circuit to meet a cer-
tain specification about the Quality factor, we must take care not to forget or
disregard the effect of parasitic resistances on the Q value.
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