
Serial Terminal EEPROM Interface

Matthew Beckler
beck0778@umn.edu

EE2361 Lab 007

April 25, 2006

Abstract

The PIC18F452 has a built-in 256-byte data EEPROM, which is ac-
cessible through a special file register (SFR). In this experiment, we have
created a user interface, using the PC’s serial port with the Hyperter-
minal software package, and the PIC’s EEPROM. There are a number
of commands the user can enter at the computer, including commands to
display the current EEPROM contents, enter data, or erase the EEPROM
entirely.

Introduction

The software for the lab experiment has a fairly simple main control loop. After
initializing the serial USART and EEPROM interfaces, the program enters into
an input-based while loop. Each time through the input-loop, the processor
prints the prompt (->), and waits for input from the user. Based on the user’s
input, the processor performs one of the following actions:

1. D - Dump EEPROM contents in Hexadecimal format.

2. T - Print EEPROM contents as a string.

3. E - Erase EEPROM.

4. S - Enter data in string format.

5. H - Enter data in hexadecimal format.

After completing the directed task, the processor returns the user to the prompt,
waiting for the next command.

Observations

In this section, I will be describing the processor’s detailed operation for each
of the five commands. First, is a description of the general processor setup, as
well as a description of all the helper functions.

A note about hexadecimal versus ASCII encoding is needed at this time.
In the standard BCD method of storing values in memory, a nibble (4-bits)
can hold one hexadecimal digit, of 0-9 or A-F. When transmitting characters

1



through the serial USART, the ASCII encoding scheme is used. In ASCII, the
digits 0-9 are represented by the values 0x30 - 0x39, the uppercase letters A-F
are 0x41 - 0x5B, and the lowercase letters a-f are 0x61 - 0x7B. This difference
will play an important role later in this experiment.

The serial USART is setup in much the same way as the previous experi-
ment. It has been set for 9600 baud, in 8-bit transmit and receive. The two
accessor functions, putch() and getch(), have returned as well. To facilitate
the transmission of data in human-readable hexadecimal format, the function
nibbleToHex() has been written, which translates between the ASCII repre-
sentation of a hexadecimal digit and the number’s true value. This function
converts a nibble, which will have a value between 0 and 15, into it’s equiva-
lent ASCII character (0-9, A-F). This allows for a very easy transmission of the
EEPROM’s data in hexadecimal format. For the hexadecimal input, a function,
named validChar(), has been created that determines if the specified charac-
ter is a valid hexadecimal digit, namely 0-9 or A-F. It has been designed to
accommodate both uppercase and lowercase letters. To actually convert these
characters into their proper values (0-15), the function hexToNibble() has been
created. It translates the ASCII-encoded hexadecimal digits into their actual
numeric values.

At startup, the data EEPROM is also configured. It is setup for both reading
and writing, and is initially erased to all zeros. The procedure for reading
values from the EEPROM is fairly straightforward, and is detailed later in this
document. Reading data from the EEPROM happens immediately, as there
is no delay between setting the ‘READ’ bit and reading the data out of the
register.

1. Set the address of the value to read: EEADR.

2. Set the read-bit: EECON1bits.RD = 1.

3. Read the value out of the data register: EEDATA.

Writing to the EEPROM is more involved, and also takes more time. The time
required for a successful write to the EEPROM depends on supply voltage and
temperature, and will also vary between processors. The write cycle is controlled
by an on-chip timer, which is out of the user’s control. Before attempting the
write cycle, it is recommended that the user disable interrupts, however this
application does not use interrupts, they have not been changed. First, the
registers EEADR and EEDATA must be loaded with the proper values, namely the
desired address of the write, and the desired data to write. Then, in a very
strange and picky sequence, you must write the values 0x55 and 0xAA into the
register EECON2. This appears to be completely superficial and pointless, but of
course, I have forgotten that everything the Microchip engineers do is always
perfectly correct, so I apologize for my insolence. Only after writing the values
into EECON2, may you finally enable the write bit, EECON1bits.WR. As stated
before, the write cycle takes a variable amount of time, which is going to be
longer than 100ns. To ensure we do not start writing a new value until the
EEPROM is finished writing the previous value, we have introduced a delay
loop which waits until the PIR2bits.EEIF returns to 0, which signifies the end
of the write cycle.

2



Dump Data in Hexadecimal Format

When the user enters the character ‘D’ or ‘d’, the processor dumps the EEP-
ROM’s data to the terminal in hexadecimal format. To accomplish this, the
processor iterates through the rows and columns of the EEPROM’s address
space, 16 addresses per row, leaving 16 columns total. For each memory ad-
dress, the processor converts the two nibbles of that particular byte into their
respective ASCII representations, which are then transmitted to the computer.
Two spaces are printed between each byte, with a carriage return and newline
printed after each row.

Print EEPROM contents as a string

When the user enters the character ‘T’ or ‘t’, the processor prints the EEP-
ROM’s contents not as hexadecimal digits, but it assumes that raw ASCII was
stored into the EEPROM. It transmits the raw EEPROM data with no trans-
lation to the computer, only stopping when a null character (0x00) is reached.

Erase EEPROM

To erase the EEPROM, the user enters the character ‘E’ or ‘e’. When it re-
ceives one of these characters, the processor starts a for loop through the entire
EEPROM address space, writing the value 0x00 to each byte. It then transmits
the message EEPROM Erased to the computer, to indicate that the EEPROM
has been successfully erased.

Enter data in string format

To enter data into the processor, the user has the option of either hexadecimal
input, or ASCII character input. If one of the characters ‘S’ or ‘s’ is entered,
the processor starts waiting for consecutive digits to be transmitted by the
computer, waiting for a carriage return to signal the end of input. After receiving
the final carriage return, the processor writes the value 0x00 after the end of
the user’s data, signalling the end of string in memory.

Enter data in hexadecimal format

When the user enters the character ‘H’ or ‘h’, the processor starts waiting for a
pair of valid hexadecimal digits. If either of these transmitted digits is invalid,
the processor returns to the prompt. If both digits are valid, the processor
writes them into the next EEPROM address.

Conclusion

Altogether, this project has been a success. The EEPROM interface works
quite well, and the serial terminal interface provides a familiar way for humans
to interact with a low-level device. The five commands provide a useful set of
actions to interact with the EEPROM, both in human-readable ASCII strings,
as well as the lower-level hexadecimal numbers.

3



Figure 1: Circuit Schematic - Courtesy Professor Rennolet
4



C Language Program

#include <p18f452.h>

#pragma config OSC=HSPLL, WDT=OFF, BOR=OFF, PWRT=ON

void putch(char byte)

{

while (!PIR1bits.TXIF);

TXREG = byte;

}

char getch(void)

{

while (!PIR1bits.RCIF);

return RCREG;

}

char nibbleToHex(char x)

{

x += 0x30;

if (x > 0x39)

{

x += 7;

}

return x;

}

char hexToNibble(char x)

{

if (x >= 0x30 && x <= 0x39)

{ //regular numeric digit

return (x - 0x30);

}

else if (x >= 0x41 && x <= 0x5B)

{ //uppercase hex

return (x - 55);

}

else if (x >= 0x61 && x <= 0x7B)

{ //lowecase hex

return (x - 87);

}

}

char validChar(char x)

{

//checks if char x is a valid hex digit

//0 = 0x30

//9 = 0x39

//A = 0x41

//F = 0x46

5



//a = 0x61

//f = 0x66

if (x >= 0x30 && x <= 0x39)

{ //digit

return 1;

}

else if (x >= 0x41 && x <= 0x46)

{ //uppercase hex

return 1;

}

else if (x >= 0x61 && x <= 0x66)

{ //lowercase hex

return 1;

}

else

{

return 0;

}

}

void main(void)

{

//char x = hexToNibble(0x34);

char welcomeMessage[] = "EEPROM Interface";

char erasedMessage[] = "EEPROM Erased";

int i, rows, cols;

char input, validInput, temp;

//initialize serial registers

TXSTAbits.TXEN = 1;

RCSTAbits.SPEN = 1;

RCSTAbits.CREN = 1;

SPBRG = 0x40;

//initialize eeprom interface

EECON1bits.EEPGD = 0;

EECON1bits.CFGS = 0;

EECON1bits.WREN = 1;

for (rows = 0; rows < 256; rows++)

{

EEADR = rows;

EEDATA = 0;

EECON2 = 0x55;

EECON2 = 0xAA;

EECON1bits.WR = 1;

while (!PIR2bits.EEIF);

PIR2bits.EEIF = 0;

}

6



//display welcome message

for (i = 0; welcomeMessage[i] != ’\0’; i++)

{

putch(welcomeMessage[i]);

}

putch(0x0D);

putch(0x0A);

while(1)

{

//write prompt

putch(’-’);

putch(’>’);

putch(’ ’);

input = getch();

putch(input); //echo character

if (input == 0x0D)

{

putch(0x0A);

}

putch(0x0D);

putch(0x0A);

switch (input)

{

case ’d’:

case ’D’:

//Display hexadecimal output

EEADR = 0;

for (rows = 0; rows < 16; rows++)

{

for (cols = 0; cols < 16; cols++)

{

EEADR = rows*16 + cols;

EECON1bits.RD = 1;

putch(nibbleToHex(EEDATA >> 4));

putch(nibbleToHex(EEDATA & 0xF));

putch(’ ’);

putch(’ ’);

}

putch(0x0D);

putch(0x0A);

}

break;

case ’t’:

case ’T’:

//Display sTring output

7



EEADR = 0;

for (rows = 0; rows < 256; rows++)

{

EEADR = rows;

EECON1bits.RD = 1;

if (EEDATA != 0)

{

putch(EEDATA);

}

else

{

break;

}

}

putch(0x0D);

putch(0x0A);

break;

case ’e’:

case ’E’:

//Erase EEPROM

for (rows = 0; rows < 256; rows++)

{

EEADR = rows;

EEDATA = 0;

EECON2 = 0x55;

EECON2 = 0xAA;

EECON1bits.WR = 1;

while (!PIR2bits.EEIF);

PIR2bits.EEIF = 0;

}

for (i = 0; erasedMessage[i] != ’\0’; i++)

{

putch(erasedMessage[i]);

}

putch(0x0D);

putch(0x0A);

break;

case ’s’:

case ’S’:

//enter String input

EEADR = 0;

while ((input = getch()) != 0x0D)

{

putch(input);

EEDATA = input;

EECON2 = 0x55;

EECON2 = 0xAA;

EECON1bits.WR = 1;

while (!PIR2bits.EEIF);

8



PIR2bits.EEIF = 0;

EEADR++;

}

EEDATA = 0;

EECON2 = 0x55;

EECON2 = 0xAA;

EECON1bits.WR = 1;

while (!PIR2bits.EEIF);

PIR2bits.EEIF = 0;

putch(0x0D);

putch(0x0A);

break;

case ’h’:

case ’H’:

//enter Hexadecimal input

EEADR = 0;

validInput = 1;

temp = 0;

input = 0;

while (validInput == 1)

{

putch(0x0D);

putch(0x0A);

putch(’=’);

putch(’ ’);

input = getch();

putch(input);

if (validChar(input) == 0)

{

validInput = 0;

}

else

{

//valid character

temp = input; //save first digit

input = getch();

putch(input);

if (validChar(input) == 0)

{

validInput = 0;

}

else

{

EEDATA = (hexToNibble(temp) << 4) + hexToNibble(input);

EECON2 = 0x55;

EECON2 = 0xAA;

EECON1bits.WR = 1;

while (!PIR2bits.EEIF);

9



PIR2bits.EEIF = 0;

EEADR++;

while (getch() != 0x0D);

}

}

}

putch(0x0D);

putch(0x0A);

break;

}

}

}

10


