
Building a Digital Voltmeter with

Serial Communication

Matthew Beckler
beck0778@umn.edu

EE2361 Lab 007

April 18, 2006

Abstract

Using the PIC18F452’s digital to analog converter (DAC), we have
created a very simple digital voltmeter. It utilizes the built-in serial ca-
pabilities of the 18F452 to transmit the voltage to a host computer using
standard RS232 serial communications. Multiple samples are taken of the
input voltage, averaged, and transmitted to the computer. A MAX202
charge pump chip is used to boost standard TTL logic levels to serial port
logic levels.

Introduction

This project combines two important devices, the analog to digital converter,
and the serial port USART. A potentiometer is used to provide an easily vari-
able voltage input. The potentiometer was connected between +5V and ground,
meaning that possible output values are between 0 and 5V. The processor sam-
ples this input voltage 128 times, and averages the recorded values. The format
for the output is one digit before the decimal point, and two digits after. The
software calculates the correct value for each digit, and transmits the data to the
computer at 9600 baud, using a standard serial cable. Using two simple func-
tion for all serial communications makes interfacing very easy from the main
line of the program. We have not used any timers in this application, nor have
we used any interrupts. We are using simple polled I/O to wait for each ADC
conversion.

Observations

The overall program control for this application is very simple. The first task is
to configure the devices’ configuration registers. This involves selecting the baud
rate of 9600, enabling 8-bit transmission with the USART, and initializing the
ADC for Fosc/64 operation. A welcome message of “Digital Voltmeter” is then
transmitted to the client. After that, the processor starts a loop of 128 samples
of the analog input, summing their values into a variable. It is important to
note that before each analog to digital conversion is started, the processor must
wait for at least 13.8µs for the aquisition time. After 128 samples have been

1

added, the processor averages and scales the variable into a number between
0 and 500. This allows for an easy translation into the three digits that are
needed for the output.

The putch function is used to put a charater to the serial port. It waits until
the transmit buffer is not filled, and can be written to. This buffer is double
buffered, meaning it can be written to twice before filling. Nevertheless, it is a
good idea to wait until the buffere isn’t filled before writing another byte. The
putch function encapsulates this very nicely. The delay function provides at
13.8µs delay for the ADC aquisition time. It is interesting to not that the while
loop contained inside the delay function only runs 3 times to produce a delay of
13.8µs. This gives a glimpse into the MCC18’s compiler in-efficiencies, because
those three loops use approximately 1380 instructions.

For translating the average, scaled voltage into three digits for serial trans-
mission, a bit of tricky programming is used. Remember, the output voltage is
a number between 0 and 500, so we only have to split this number into the three
digits. The least significant digit can be found by taking the voltage modulo
10. The modulo operation find the remainder when the voltage is divided by
10, leaving the value of the least significant digit. To find the next digit, we
first must use integer division to divide the voltage by 10. Since integer division
truncates the decimal part of the quotient, we are left with the proper value. For
example, if we start with a voltage value of 427, using integer division, 427 / 10
is truncated to 42. If we perform the modulo 10 operation on this result, we get
the second digit of the final answer. The same process can be repeated for the
most significant digit, by dividing by 100 instead of dividing by 10. These three
digits are stored into three variables, d0, d1, d2, and are sent out the serial
port, with a decimal point after the first digit. After each value is transmitted
to the computer, the processor sends a carriage return, ASCII character 0x0D,
which resets the computer terminal’s cursor to the start of the current line,
ready to overwrite the transmitted voltage. Since this happens very quickly, at
a rate to be calculated in the next section, a human will not notice a delay. In
fact, the values are provided much more quickely than the computer’s monitor
can update itself, so the processor’s sample and transmission rate is not a source
of delay.

When considering the sampling rate of the digital voltmeter, a number of
factors come into play. The analog to digital conversion takes a certain amount
of time, composed of two parts, the aquisition time and the successive approxi-
mation time. The aquisition time is a constant 13.8µs per sampling. The ADC
uses a sample and hold scheme for the conversion, and there are capacitors in-
volved which must charge to the proper levels before an accurate sample can
be taken. The time for the successive approximation is based on the basic idea
of the processor’s ADC method. The PIC has a seperate clock for the ADC,
called TAD, which we have set to Fosc/64 for this project. The term, Succes-
sive approximation, means that for each TAD clock, one bit of the final value is
found, starting with the most significant. Since the ADC in our PIC has 10-bit
resolution, it takes, at the least, 10 TAD clocks to complete the conversion. The
actual value is 12 TAD clocks. The period of the 40 MHz Fosc is 25ns. The
period of TAD = Fosc/64 = 625KHz is 1.6µs. The sampling rate for each
10-bit analog to digital conversion takes:

13.8µs+ 12 · 1.6µs = 33µs

2

For all 128 samples per transmission, the processor needs:

33µs · 128 = 4.2ms

When this time period is compared to the period of the USART’s 9600 baud
transmission, you notice that the time period required for the 128 ADC samples
is much longer than the time period for one transmission. The ADC’s sampling
is completed in 4.2ms, while the time necessary to transmit five bytes, (three
digits, one decimal point, and a carriage return), is:

5 ·
(

1

9600
s

)
= 5 · 104.167µs = 520.833µs

You could transmit the data over 8 times in the time it takes to complete all
128 ADC samples.

An analog input of 2.3 volts would be converted into a 10-bit binary number
according to the following formula:

V =
B

210
· 5 =

5 ·B
1024

⇒ B =
V

5
· 1024

Where V is the analog voltage input, and B is the 10-bit binary number received
as output. For the input voltage of 2.3 volts:

B =
V

5
· 1024 =

2.3

5
· 1024 = 471

The resolution of the 10-bid ADC is simply the smallest voltage difference
between adjacent binary numbers. For this setup, the basic resolution is:

1

210
=

1

1024
= 0.000977 = 977µs

However, this number is the resolution of the ADC when measuring voltages
between 0 volts and 1 volt. For this project, we need to scale the resolution:

Resolution = 0.00977 ∗ 5V olts = 0.004833 = 4833µs

Conclusion

Altogether, this project was very much a success. We have successfully inter-
faced a PIC processor with a standard x86 computer through the standard serial
port. We have refined our ADC interfacing skills, and practiced working with
decimal numbers without the use of the floating point number package on the
PIC. The voltages measured and transmitted to the computer are accurate to
approximately one part in 200, and are generated at a quicker rate than the
computer, or a human, can use.

3

Figure 1: Circuit Schematic - Courtesy Professor Rennolet
4

C Language Program

#include <p18f452.h>

#pragma config OSC=HSPLL, WDT=OFF, BOR=OFF, PWRT=ON

void putch(char byte)

{

while (!PIR1bits.TXIF);

TXREG = byte;

}

void delay(void)

{

int x = 3;

while(x--);

}

void main(void)

{

char welcomeMessage[] = "Digital Voltmeter";

unsigned long int i, average, d0, d1, d2;

unsigned long int values;

unsigned long int scaleFactor = 130944; //130944 = 1023*128

//initialize serial registers

TXSTAbits.TXEN = 1;

RCSTAbits.SPEN = 1;

RCSTAbits.CREN = 1;

SPBRG = 0x40;

//initialize the ADC registers

ADCON0 = 0b10000001;

ADCON1 = 0b11000000;

for (i = 0; welcomeMessage[i] != ’\0’; i++)

{

putch(welcomeMessage[i]);

}

putch(0x0D);

putch(0x0A);

while(1)

{

values = 0;

average = 0;

for (i = 0; i < 128; i++)

{

delay(); //wait 13.8 us for acquisition

ADCON0bits.GO = 1; //start AD conversion

while (ADCON0bits.GO); //wait for AD to finish

5

values += ADRES;

}

average = (values * 500) / (scaleFactor);

d0 = average \% 10;

d1 = (average / 10) \% 10;

d2 = (average / 100) \% 10;

putch(’0’ + d2);

putch(’.’);

putch(’0’ + d1);

putch(’0’ + d0);

putch(0x0D);

}

}

6

