
Analog Output with a Digital to Analog

Converter

Matthew Beckler
beck0778@umn.edu

EE2361 Lab 007

April 5, 2006

Abstract

Without help, microcontrollers can have great trouble creating ana-
log signals. Approximations using rectifiers and pulse-width-modulation
schemes work to a degree, but the best method of creating an analog sig-
nal is to use a Digital-to-Analog converter. These relatively simple, but
sometimes expensive, devices work very nicely for this task. In this lab, we
create a rudimentary triangle-wave generator with a PIC microprocessor
and a 12-bit DAC.

Introduction

To create a triangle waveform, the signal’s voltage should increase linearly from
the minimum voltage to the maximum voltage, then linearly decrease back down
to the minimum voltage. The process then repeats. We can approximate a
triangle wave by updating a DAC device’s voltage at a regular time interval,
using the smallest voltage increment the DAC supports. We have set up a
dedicated timer to generate regular interupts, where we either increment or
decrement two output data registers. These two registers are connected to the
twelve input pins of our DAC. When the maximum or minimum voltage has
been reached, the program switches direction.

Observations

The progamming for this project is relatively simple compared to other projects.
Timer two has been set up for operation with no prescaler and no postscaler.
The period register PR2 has been set to 243, which produces interrupts every
24.4 microseconds. The interrupt handling routines have returned from previous
labs, and we are again using only the high priority interrupt handler. Two
global variables have been created, value, and direction. The current number
being sent to the DAC is stored in value, while the current slope (± 1) is stored
in direction. Each time the processor runs the interrupt handler, the value of
direction is added to the current value. The processor then checks if the current
value has reached either end of the continum, at either 4095 or 0. If one of
these conditions is detected, direction is multipled by negative 1, which flips it

1

between +1 and -1. The values of PORTC and PORTD are updated to reflect the
new current value, and the DAC’s write pin is toggled, signaling the DAC to
update its internal data latches.

For accuracy calculations, we will consider both the voltage and time errors.
Using reference voltages of 0V and +5V, there are 4096 voltage increments
between those two voltages, since this is a 12-bit DAC, and 212 is 4960. This
produces a voltage resolution of:

(5− 0)

212
= 0.001220703125

V olts

Division

This means that the output voltage should be the calculated voltage plus or
minus this resolution factor. We can write formulas for translating between a
binary value (N) and an analog voltage (V):

V =
5

212
∗N ± 1

2
∗ 5

212
=

(
N ± 1

2

)
∗ 5

212

For calculating the accuracy of the signal frequency, we need to look at
the accuracy of the timing interrupts. With the Timer 2 Period Register set
to 243, Timer 2 will generate an interrupt once every 244 ∗ 100ns = 24.4µs.
There are 4096 interrupts needed for one half of a period, so 8192 interrupts
per waveform period. The frequency of the waveform, from trough to trough,
is 8192 ∗ 24.4µs = 0.1998848 seconds. This equates to a period of 5.0028816
Hz. The waveform generator would need to run for at least 4736 periods, which
corresponds to 347 seconds (5:47), before the waveform would be one period off
from the ‘correct’ waveform.

Conclusion

Altogether, this project was a success. The osciloscope trace appeared to be
perfect, but as we have calculated, it is not quite perfect. The waveform gains
one period once every 5:47, which is not good enough for most projects, but as
a proof-of-concept project, it works quite well. Learning to interface with a high
quality DAC is a useful skill to have for future projects. Using the parallel IO
in combination with a control bit will be useful for other types of devices, such
as an LCD display or parallel IO controller. Continuing to develop our skills
with the timers, we have devised a very accurate usage of Timer 2, using the
automatically resetting period register.

2

Figure 1: Circuit Schematic - Courtesy Professor Rennolet
3

C Language Program

#include <p18f452.h>

#pragma config OSC=HSPLL, WDT=OFF, BOR=OFF, PWRT=ON

void low_isr(void);

void high_isr(void);

static volatile int value = 0;

//value is the current output

//and is between 0 and 4095

static volatile int direction = 1;

//1 is increasing, -1 is decreasing

#pragma code high_isr_entry=0x8

void high_isr_entry(void)

{

_asm GOTO high_isr _endasm

}

#pragma code low_isr_entry=0x18

void low_isr_entry(void)

{

_asm GOTO low_isr _endasm

}

#pragma code

#pragma interrupt high_isr

void high_isr(void)

{

PIR1bits.TMR2IF = 0;

value += direction;

if ((value == 4095) || (value == 0))

{

direction *= -1;

}

//update PORTC and PORTD

PORTD = value & 0xFF;

PORTC = value >> 8;

PORTEbits.RE0 = 0;

//wait at least 200ns

//for the DAC to update

_asm nop _endasm

_asm nop _endasm

PORTEbits.RE0 = 1;

}

4

#pragma interrupt low_isr

void low_isr(void){}

void main(void)

{

TRISC = 0; //RC0-RC3 are DB8-DB11

TRISD = 0; //RD0-RD7 are DB0-DB7

TRISE = 0; //RE0 is the not-enable bit

PORTC = 0;

PORTD = 0;

PORTEbits.RE0 = 1;

INTCONbits.GIE = 1; //enable global interrupts

INTCONbits.PEIE = 1; //enable peripheral interrupts

PIE1bits.TMR2IE = 1; //enable Timer2 interrupt

PIR1bits.TMR2IF = 0; //clear Timer2 interrupt flag

T2CON = 0b00000100; //Timer2: No pre- or post-scaler

PR2 = 243; //Timer2 set to 24.4 microseconds

while(1);

}

5

