
Accurate Time and Interrupts

Matthew Beckler
beck0778@umn.edu

EE2361 Lab Section 007

March 7, 2006

Abstract

In this lab, we create a very accurate digital clock using one of the
microcontroller’s timers. We will use interrupts to provide a structured
code enviroment, and utilize the dual digit, seven-segment display from
the previous experiment.

Introduction

It can be very difficult to accurately measure a duration of time using a mi-
crocontroller, especially when you are trying to accomplish other work between
ticks. Without using the hardware timers, making an accurate loop requires
careful counting of the instructions inside the loop. If timers are used, you are
guaranteed that the proper flag will be set at the proper time. Normally, this
is accomplished through the use of a while loop, waiting for the proper bit to
change. Using interrupts simplifies this process greatly. To utilize the inter-
rupts, you first need to define the interrup handlers, low_isr and high_isr. In
this lab, we will only be using the high-priority interrupt handler. While wait-
ing for the interrupt, we will be updating the dual-digit seven-segment displays,
using the same alternating, multiplexed display as the previous lab.

For recording the digits to display, we store both digits in a single byte. We
stored the least-significant digit in the lower nybble, and the most-significant
digit in the upper nybble.1 We will be using the binary coded digit encoding
for storing both digits in the register.

We will also be investigating the accuracy of the timer, both from an analysis
of the software in the simulator, and from real-world investigations and mea-
surements. For the actual measurements, we will be measuring how much real
time must elapse to observe one second of error. These results will be displayed
later in this document.

Observations

For the scope of the main program, we have created a number of helper func-
tions. The void display(void) function has returned from the previous lab.

1For a discussion of nibble vs. nybble, see The New Hacker’s Dictionary, Second Edition.
1993. MIT Press, Cambridge, Massachusetts. p. 306

1



The initial values of the digits have been changed from all segments off, to dis-
playing 0. This is how the clock will start, and is a better choice than to start off
blank, then jump right to 01. We have removed the hexadecimal digits from our
tabular data, because the characters for A B C D E F will not be used. Other
than these small changes, the display() function is the same as before.

Since we are using interrupts in our program’s source code, a brief expla-
nation of the PIC microcontroller’s implimentation of interrupts is is necessary.
The microcontroller has the ability to use two classes of interrupts, known as
low-priority and high-priority interrupts. For most applications and devices,
only one class of interrupts is necessary. Under normal operation, the micro-
controller starts execution at program memory location 0. When interrupts
are in use, two additional addresses in program memory have special meaning.
When an interrupt occurs, the processor will jump the program counter to one
of two interrupt handlers, which are specific locations in program memory. The
high-priority interrupt handler starts at program memory location 0x8, and the
low-priority interrupt handler starts at program memory location 0x18. Nor-
mally, there is not enough space to store your complete interrupt handling code
in these locations, so a goto instruction is often used to branch somewhere
else in the program memory. In this experiment, we will only be using the
high-priority interrupts.

A new class of statements for this experiment are the #pragma directives,
which are instructions to the compiler, suggesting how to compile the program.
We are using the #pragma directives to specify where the compiler places our
program code. As explained in the previous section, the interrupt handling
code must be placed in specific places in the PIC’s program memory. We use
the #pragma directive to place the interrupt handlers in the correct place. Here
is a code exerpt from the main program, demonstrating the embedded assembly
that is used to branch the execution to a location in program memory with more
room for the actual interrupt handlers:

//Instruct the compiler to place the following code at 0x8

#pragma code high_isr_entry=0x8

void high_isr_entry(void)

{

//embedded assembly code

_asm GOTO high_isr _endasm

}

//Instruct the compiler to place the following code at 0x18

#pragma code low_isr_entry=0x18

void low_isr_entry(void)

{

//embedded assembly code

_asm GOTO low_isr _endasm

}

//Give code placement back to the compiler

#pragma code

Nearly every microcontroller includes timing devices on-chip. The PIC18F452
is no exception, with a total of four timers available, with many features and

2



options to customize their operation. For this experiment, we will be using
the TIMER0 device. This is a 16-bit counter/timer, with internal/external clock
inputs, variable edge-detection settings, and an 8-bit programmable prescaler.
In 16-bit mode, Timer 0 has two registers that store the current count, TMR0L
and TMR0H. The high byte is latched, so reading/writing from/to TMR0L will do
the same operation between TMR0H(the latched register) and the actual register.
Another important feature of Timer 0 is the ability to pre-set the count to cus-
tomize the time to interrupt. This is done by loading the uppper byte of the
desired value into TMR0H, and writing the lower byte of the desired value into
TMR0L.

At the start of the void main(void) function, we initialize the TIMER0 de-
vice. There are a number of options available for Timer 0; our timer is setup
for 16-bit mode with a pre-scaler of 1. This is done by writing the value 0x80

into the T0CON register. We also must enable global interrupts and the Timer
0 interrupt. We will be loading a starting count of 60543 = 0xEC7F into the
TMR0 registers. We must load this value at the start of the program, as well
as every time an interrupt occurs. This value corresponds to a timer period of
approximately 1 millisecond.

The output to the LED display is handled with PORTC for the 8 data lines,
and PORTD pins 0 & 1 for the digit select lines. We enable output for these
ports and clear their values at the start of the program.

When the Timer 0 interrupt occurs, the high-priority interrupt handler is
called. The first statements in this function reset the counter’s value. This is
very important in regards to the accuracy of the timer. We want to reset the
counter’s value as soon as possible immediately after it rolls-over, because any
statements executed between roll-over and counter reset are not accounted for
in the counter’s value, and will affect the total time, albeit very slightly. For
the rest of the interrupt handler, we are going to keep a variable to hold the
number of milliseconds until the next whole second has elapsed. For 999/1000
interrupts, all we do is decrement the milliseconds variable from 1000 to 0.
When it reaches 0, we first reset milliseconds to 1000, and increment our
count variable, which is holding the number of elapsed seconds, modulo 100, in
BCD packed-digit format. Since the count variable is really holding two values,
we need to check when the lower nybble has reached a value of 10. When this
happens, we need to produce a carry into the upper nybble, which we accomplish
by adding 6 to count. We then check to see if count has just been incremented
to the value of 100 = 0xA0(using BDC packed-digit format). If we have reached
100, we reset count to 0x00. After adjusting count, we use its value to set the
digits to be displayed.

When analyzing the accuracy of the clock, we have looked at two ways of
measurement. When analyzing the accuracy of the clock using the MPLAB
simulator’s stopwatch feature, we found that the clock would be 159

10,000 = 0.0159
seconds fast per true second. This translates to one second fast in 62 minutes,
53.5849 seconds. This seems a bit large, as the clock would be 5.807 days fast
after one year. To measure the real-world accuracy, we have chosen to run
the timer against a (fairly) accurate digital wristwatch, and observe how much
time must elapse until the wristwatch and the microcontroller clock differ by
one second. This will be somewhat inaccurate, as we are depending on a mere
mortal to identify when the clocks are exactaly one second off, which is quite
difficult to do, and has a large margin of error. The value that we both agreed

3



upon was approximately 90 minutes, but the microcontroller clock was running
slower than the reference clock. This equates to an error of 0.00185 seconds
slow per true second, which is 16 hours, 13 minutes, 58.75 seconds slow per true
year, which is more accurate than the simulator-based estimation.

In the interrupt handling function, we are using a total of 34 instruction
clock cycles. Operating our processor at 40 MHz, this translates to 3,400ns, or
3.4µs. Since we are resetting the count of Timer 0 as the first statements in the
handler, the 3.4µs delay is not a factor in the accuracy of the timer.

Conclusion

Altogether, the timer project accomplished the stated goals. The clock keeps
fairly accurate time, only loosing 1 second in 90 minutes. We have learned a
great deal about the workings of the PIC’s timers, as well as interrupt setup
and handling. We have successfully used the #pragma directives to influence the
compiler’s operation.

Circuit Schematic

Figure 1: Circuit Schematic - Courtesy Professor Rennolet

4



C Language Program

#include <p18f452.h>

#pragma config OSC=HSPLL, WDT=OFF, BOR=OFF, PWRT=ON

#define TVAL 60543

void low_isr(void);

void high_isr(void);

static unsigned char values[] = {0, 0};

static unsigned char count = 0;

static unsigned int milliseconds = 1000;

//Instruct the compiler to place the

// following code at 0x8

#pragma code high_isr_entry=0x8

void high_isr_entry(void)

{

//embedded assembly code

_asm GOTO high_isr _endasm

}

//Instruct the compiler to place the

// following code at 0x18

#pragma code low_isr_entry=0x18

void low_isr_entry(void)

{

//embedded assembly code

_asm GOTO low_isr _endasm

}

//Give code placement back to the compiler

#pragma code

/* pragma for generating interrupt code */

#pragma interrupt high_isr

void high_isr(void) /* definition of high_isr */

{

TMR0H = TVAL >> 8;

TMR0L = TVAL & 255;

milliseconds--;

if (!milliseconds)

{

count++;

milliseconds = 1000;

if ((count & 0x0F) == 0x0A)

{

count = count + 6;

//increments upper nybble

// & clears lower nybble

5



}

if (count == 0xA0)

{

count = 0x00;

//reset the count

}

values[0] = (count & 0x0F);

values[1] = (count >> 4);

}

INTCONbits.T0IF = 0;

}

#pragma interrupt low_isr

void low_isr(void){}

void display(void)

{

static unsigned char numbers[] =

{

0b00000011,

0b10011111,

0b00100101,

0b00001101,

0b10011001,

0b01001001,

0b01000001,

0b00011111,

0b00000001,

0b00001001

};

static unsigned char which = 0;

if (!which)

{

PORTDbits.RD0 = 0;

PORTC = numbers[values[0]];

PORTDbits.RD1 = 1;

}

else

{

PORTDbits.RD1 = 0;

PORTC = numbers[values[1]];

PORTDbits.RD0 = 1;

}

which = !which;

return;

}

6



void main(void)

{

/* enable timer 0 16 bit op w prescaler = 1 */

T0CON = 0x80;

INTCONbits.T0IF = 0;

INTCONbits.T0IE = 1;

INTCONbits.GIE = 1;

TMR0H = TVAL >> 8;

TMR0L = TVAL & 255;

TRISC = 0; //7-segment outputs

TRISD = 0; //segment-selector bits

PORTC = 0;

PORTD = 0;

while(1)

{

display();

}

}

7


