
Arithmetic Programming with a

Pseudo-Random Number Generator

Matthew Beckler
beck0778@umn.edu

EE2361 Lab Section 007

February 14, 2006

Abstract

In this lab, a pseudo-random number generator is created, requiring
custom addition and multiplication functions. The algorithm is imple-
mented both in assembly language and the C programming language.

1 Introduction

This lab is intended to illustrate the limitations of the PIC18F family’s arith-
metic operators. The pseudo-random number generating algorithm we have
implemented requires a 32-bit add and a 16x16-bit multiply, but the PIC18F
family only has support for an 8x8-bit multiply and 8-bit add. To illustrate
the flow of the pseudo-random number generator, a flowchart has been created,
and included in the appendices. The basic premise of the projects operation
is to generated pseudo-random numbers, meaning in a predefined sequence.
The output number will be displayed on eight LED’s attached to PORTC. The
LED’s are connected in an active low configuration, whereas when the pin on
the microcontroller is pulled low, current will flow through the LED, causing
it to light. This means that the number being output will not actually be dis-
played, rather the compliment of that number will be displayed. This is not a
big problem, as humans can easily reverse it in their heads. When the project
is initially powered-on, none of the LED’s are to be lit. When the button is
pressed, which is connected between PORTB pin 7 and ground, the first of
the numbers is calculated and output to the LED’s. Since tactile pushbutton
switches are mechanical devices, they do not produce a perfect electronic signal.
When pushed, the buttons generate a random sequence of 1’s and 0’s, which
is called signal noise. The easiest way to eliminate this potential problem is to
introduce a delay immediately after the first detected button press or release.
This will allow time for the button to settle down. A circuit schematic, which
has been provided by the instructor, is included the appendices. This lab has
been programmed in both assembly and the C language. Both program sources
have been included in the appendices.

1



2 Observations

The 16x16-bit multiplication subroutine requires 33 instruction clock cycles in-
cluding the calling and returning instructions. The pseudo-random number
generating subroutine, which includes two calls to the multiply subroutine and
three calls to the addition subroutine, requires 222 instruction clock cycles in
total, again, including the calling and returning instructions.

When initially designing this program, it was helpful to create both a flowchart
and a pseudo-code representation of the program to be. The flowchart is in-
cluded in the appendices, and the pseudo-code is reproduced here:

main

{

wait until the button is pushed

wait a specified time for the button to debounce

call the new random number function

send the new number to the output

wait until the button is released

wait a specified time for the button to debounce

repeat from the top

}

When the experimental software and hardware are properly setup, each suc-
cessive push of the button produces a new byte of output on the LED’s. The
first few values produces are: 0xF7, 0x48, 0xBC. Our circuit produced the
correct values for both the assembly language version as well as the C language
version.

3 Conclusion

The desired outcome of this lab was successful, in that both implementations
of the circuit operate properly. I feel that it was a valuable exercise in assembly
language programming, as it introduced many important concepts, including
modularity of subroutines, passing values into and returning values from a sub-
routine, translation of generic pseudo-code into assembly, project planing, and
sourcecode optimization.

2



4 Appendices

Figure 1: Circuit Schematic

3



Waiting for Button Push

RB7Set

Delay Loop (Debounce)

Clear

Call Random

Waiting for Button Push

��RB7Clear

Set

Delay Loop (Debounce)

Figure 2: Program Flowchart
4



5 Assembly Language Program

list p=18F452

include p18f452.inc

radix decimal

cblock 0

A0, A1, A2, A3

B0, B1, B2, B3

OUT0, OUT1, OUT2, OUT3

COUNT0, COUNT1

SEEDX0, SEEDX1, SEEDX2, SEEDX3

SEEDY0, SEEDY1, SEEDY2, SEEDY3

RANDA0, RANDA1, RANDB0, RANDB1

endc

org 0

goto main

org 8

retfie

org 0x18

retfie

main:

clrf A0

clrf A1

clrf A2

clrf A3

clrf B0

clrf B1

clrf B2

clrf B3

clrf OUT0

clrf OUT1

clrf OUT2

clrf OUT3

clrf SEEDX0

clrf SEEDX1

clrf SEEDX2

clrf SEEDX3

clrf SEEDY0

clrf SEEDY1

clrf SEEDY2

clrf SEEDY3

clrf RANDA0

clrf RANDA1

clrf RANDB0

clrf RANDB1

5



;initialize SEEDX

movlw 0xB5

movwf SEEDX0

movlw 0x3B

movwf SEEDX1

movlw 0x12

movwf SEEDX2

movlw 0x1F

movwf SEEDX3

;initialize SEEDY

movlw 0xE5

movwf SEEDY0

movlw 0x55

movwf SEEDY1

movlw 0x9A

movwf SEEDY2

movlw 0x15

movwf SEEDY3

clrf A0

clrf A1

clrf A2

clrf A3

clrf B0

clrf B1

clrf B2

clrf B3

clrf TRISC ;set output for PORTC

setf PORTC

bcf INTCON2, 7 ;enable internal pullups on PORTB

loop:

waitforswitchdown:

btfsc PORTB, 7

goto waitforswitchdown

call delay

call random

movff OUT0, PORTC

waitforswitchup:

btfss PORTB, 7

goto waitforswitchup

call delay

goto loop

6



random:

;-----------------------------------------------------------

; Pseud-Random Number Generator

; Inputs: None

; Outputs: From LSB to MSB: OUT0, OUT1, OUT2, OUT3

clrf A0

clrf A1

clrf A2

clrf A3

clrf B0

clrf B1

clrf B2

clrf B3

clrf OUT0

clrf OUT1

clrf OUT2

clrf OUT3

movlw 0x50

movwf RANDA0

movlw 0x46

movwf RANDA1

movlw 0xB7

movwf RANDB0

movlw 0x78

movwf RANDB1

;SEED_X = a*(SEED_X&65535) + (SEED_X>>16);

movff RANDA0, A0

movff RANDA1, A1

clrf A2

clrf A3

movff SEEDX0, B0

movff SEEDX1, B1

clrf B2

clrf B3

call multiply

movff OUT0, A0

movff OUT1, A1

movff OUT2, A2

movff OUT3, A3

movff SEEDX2, B0

movff SEEDX3, B1

clrf B2

clrf B3

call add

7



movff OUT0, SEEDX0

movff OUT1, SEEDX1

movff OUT2, SEEDX2

movff OUT3, SEEDX3

;SEED_Y = b*(SEED_Y&65535) + (SEED_Y>>16);

movff RANDB0, A0

movff RANDB1, A1

clrf A2

clrf A3

movff SEEDY0, B0

movff SEEDY1, B1

clrf B2

clrf B3

call multiply

movff OUT0, A0

movff OUT1, A1

movff OUT2, A2

movff OUT3, A3

movff SEEDY2, B0

movff SEEDY3, B1

clrf B2

clrf B3

call add

movff OUT0, SEEDY0

movff OUT1, SEEDY1

movff OUT2, SEEDY2

movff OUT3, SEEDY3

;put ((SEED_X&65535) + (SEED_Y&65535))/2; into OUT0->OUT3

movff SEEDX0, A0

movff SEEDX1, A1

clrf A2

clrf A3

movff SEEDY0, B0

movff SEEDY1, B1

clrf B2

clrf B3

call add

rrcf OUT3, F

rrcf OUT2, F

rrcf OUT1, F

rrcf OUT0, F

return

8



delay:

clrf COUNT0

clrf COUNT1

delayloop:

incf COUNT0,f

bnz delayloop

incf COUNT1,f

bnz delayloop

return

multiply:

;-----------------------------------------------------------

; 16x16 bit multiply

; Inputs: From LSB to MSB: A0, A1, B0, B1

; Outputs: From LSB to MSB: OUT0, OUT1, OUT2, OUT3

clrf OUT0

clrf OUT1

clrf OUT2

clrf OUT3

movf B0, W

mulwf A0

movff PRODL, OUT0

movff PRODH, OUT1

mulwf A1

movf PRODL, W

addwf OUT1, F ;this might produce a carry into col2

movf PRODH, W

addwfc OUT2, F ;this puts the new value (from PRODH)

; into out2, with a possible carry

movf A0, W

mulwf B1

movf PRODL, W

addwf OUT1, F ;this might produce a carry into col2

movf PRODH, W

addwfc OUT2, F ;this might produce a carry into col3

clrf WREG ;clear W to add to the OUT3

addwfc OUT3, F ;this will take care of the carry

movf A1, W

mulwf B1

movf PRODL, W

addwf OUT2, F ;this might produce a carry into col3

movf PRODH, W

addwfc OUT3, F

return

9



add:

;-----------------------------------------------------------

; 32+32 bit addition

; Inputs: From LSB to MSB: A0, A1, A2, A3; B0, B1, B2, B3

; Outputs: From LSB to MSB: OUT0, OUT1, OUT2, OUT3

; Note: Sets the Carry Status Flag when necessary

movf A0, W

addwf B0, W

movwf OUT0

movf A1, W

addwfc B1, W

movwf OUT1

movf A2, W

addwfc B2, W

movwf OUT2

movf A3, W

addwfc B3, W

movwf OUT3

return

done:

goto done

end

10



6 C Language Program

#include <p18f452.h>

static unsigned long int SEED_X = 521288629L;

static unsigned long int SEED_Y = 362436069L;

void delay(void)

{

unsigned int count = 0;

while (count < 0x7FFF)

{

count++;

}

}

unsigned int random(void)

{

/* This function was given to us by the instructor

in the laboratory guidelines */

static unsigned int a = 18000, b = 30903;

SEED_X = a*(SEED_X&65535) + (SEED_X>>16);

SEED_Y = b*(SEED_Y&65535) + (SEED_Y>>16);

return ((SEED_X&65535) + (SEED_Y&65535))/2;

}

void main(void)

{

TRISC = 0;

PORTC = 0xFF;

INTCON2bits.RBPU = 0;

while (1)

{

while (PORTBbits.RB7);

delay();

PORTC = random();

while (!PORTBbits.RB7);

delay();

}

}

11


