
Introduction to Assembly Language

Programming with the PIC Microcontroller

Matthew Beckler
beck0778@umn.edu

EE2361 Lab 007

February 1, 2006

Abstract

In this lab, we are introduced to many aspects of working with the PIC
Microcontroller. In building and programming a simple LED blinking cir-
cuit, the MPLAB IDE, processor flashing, assembly language programing,
and basic PIC circuit setup are all introduced.

1 Introduction

The objective of this lab is to gain a basic understanding and skill set for working
with the PIC microcontroller. We will be using the PIC to flash a LED which
we can then use to calculate the internal instruction clock. We will accomplish
these goals through the following steps:

1. Construct basic PIC circuit

2. Familiarization with the MPLAB environment

3. Flashing of simple program to the PIC

4. Installation and troubleshooting of flashed PIC

5. Analysis of source program

6. Timing of LED flashes

7. Calculation of instruction clock

The source code for this project, which was provided by our Professor, is in-
cluded on the next page.

1



list p=18F452 ;simply sets the processor type being used

include p18f452.inc ;include file for our processor, needed for

; predefined things such as "PORTC"

radix decimal ;this specifies that default radix is decimal

;to override below in code,

; use b’01..’ for binary, or 0xF2.. for hex

cblock 0 ;define variable address location names (starting at 0)

count2, count1, count0

bits

endc

org 0 ;reset vector...program execution starts here

; (program address 0)

goto main

org 8 ;high priority interrupt vector (can ignore for now)

retfie

org 0x18 ;low priority interrupt vector (can ignore for now)

retfie

main:

clrf TRISC ;set all bits of port C to output

; (0 for ’O’utput, 1 for ’I’nput)

clrf PORTC ;and set them all to 0

clrf count0

clrf count1

oloop:

clrf count2

loop:

incf count0,f ;4 clocks

bnz loop ;8 clocks if taken, 4 else

; (loop is 256*12 - 4 clocks)

incf count1,f ;4 clocks

bnz loop ;8 clocks if taken, 4 else

; (loop is 256*(3068+12) - 4 clocks)

incf count2,f ;4 clocks

btfss count2,4 ;8 clocks if bit 4 of count3 is 1, 4 else

goto loop ;8 clocks (this instruction is skipped when count2 has

;been incremented 16 times, which occurs when the above

;loops have executed 16*(788476+12)-4 clocks

incf bits,f ;4 clocks

movf bits,w ;4 clocks

movwf PORTC ;4 clocks

goto oloop ;8 clocks

end

2



Figure 1: Circuit Schematic

3



2 Data

When the experiment hardware and software are properly setup, the LED starts
blinking. We were instructed to try both a 5V and 3V supply, to observe any
changes in the timing of the blinks. Our method of timing was to count the
number of transitions, both on to off, and off to on, that occurred in a 30
second window. We then divided the number of transitions by 30 to obtain the
frequency of blinking. The results are summarized in the table:

Voltage Transitions per 30 seconds Frequency (hz)
3V 90 3.0
5V 96 3.2

As shown, there was not a significant difference between operation at 3V when
compared to 5V. In the rest of this experiment, we used the value of 3hz for the
LED transition frequency.

To calculate the instruction clock and the oscillation clock, we need to com-
pare the number of instructions executed to the frequency of blinks on the LED.
This allows us to ‘see’ into the code’s execution. For this source code, we deter-
mined the number of oscillations required to be approximately 12,615,828. This
is based on the fact that most of the instructions require four oscillations, but
some require eight or twelve. Taking the number of instruction and dividing by
the time per transition, we can determine the frequency of the basic oscillator:

12, 615, 828 instructions
1
3 second

= 12, 615, 828 · 3 = 37, 847, 484hz

This is quite close to the correct value of approximately 40 mhz.
Since each instruction takes four clock cycles, the frequency of the instruction

clock is 1
4 the previous value. This value, 9,461,871 hz, is approximately the

value of the external crystal oscillator.

3 Conclusion

The desired outcome of this lab was successful, in that we learned everything
we were supposed to. Since the basic crystal and power supply section of the
PIC circuit are mostly the same between labs, we are well prepared for the
next laboratory investigation next week. The initial discomfort with assembly
language programming has been overcome through the study of well commented
code, and we are eagerly awaiting the next lab.

4


