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1 Introduction

When researching a project for this lab, my lab group and I decided that we
wanted to do something out of the ordinary. The project that we developed,
which is the subject of this report, certainly was unique. We decided to inves-
tigate a class of circuits which are described in a paper titled “Simple chaotic
systems and circuits” by J. C. Sprott. In this paper, Sprott describes the history
of the search for chaotic behavior in simple differential equations. One of the
equations described can be constructed using relatively few simple electronic
components, including resistors, capacitors, diodes, and operational amplifiers.

2 Predictions

Based on information and results in Sprott’s paper, we thought that it would be
a simple matter of properly constructing the circuit, and observing the results on
the oscilloscope. Due to the simplicity of the circuit, and the simple parts used,
the circuit was expected to function immediately. We also wanted to compare
the results from the circuit with results from a numerical analysis, using a
fourth-order Runge-Kutta algorithm. As demonstrated in Sprott’s paper, we
expected our oscilloscope traces to look almost exactly the same as the output
from the numeric simulation.

3 Description of Experiment

In our experiment, we constructed our circuit to match the schematic given
in Sprott’s paper. Initially, we ordered incorrect parts, receiving tiny surface-
mount components instead of breadboard sized components. We eventually
acquired all the proper parts, and commenced construction. The resistors in
the circuit are 1kΩ, the capacitors are 0.1µF, and the variable resistor varied
between 1kΩ and 2kΩ. As the circuit is fairly simple, we were able to transfer
the circuit onto our breadboard relatively quickly. Unfortunately, the circuit
did not work, nor did it produce any meaningful output to either oscilloscope or
multimeter. We decided to test one of the simple mathematic operator circuits
also included in Sprott’s paper, to determine if we were using the operational
amplifier chips properly. We decided to construct the basic integrator, of which
there are three such integrators in our full circuit. We were unable to get
even this simple circuit sub-element working. We tried many combinations of
resistors and capacitors, of varying sizes and orientations, but nothing seemed to
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work. We tried changing the voltage on our power supply, but that did nothing.
We eventually abandoned the actual circuit, and focused on understanding the
mathematics behind the circuit and equation, and also the mathematical model
we were simulating.

4 Results & Analysis

The equation we decided to model is:

...
x = −Aẍ − ẋ ± (|x| − 1) (1)

It is called a ”Jerk Function” because it is a ordinary differential equation of
order three that can be written in the form:

...
x = J(ẍ, ẋ, x) (2)

Sprott selected this equation by doing a computer search for possible equations,
based on this general form:

...
x = a1ẍ + a2φ(ẍ) + a3ẋ + a4φ(ẋ) + a5x + a6φ(x) + a7 (3)

where φ(x) is a simple nonlinear function that can be implemented using sim-
ple electronic components. Some examples of these functions include abs(x),
max(x, 0), min(x, 0), and −sgn(x). Sprott was able to significantly narrow his
search parameters by restricting any solution that had |ẍ|, |ẋ|, or |x| exceed 10,
a voltage that will usually saturate an operational amplifier. This saturation is a
property of the transistors that are used to construct the op amp, but is simply
a point where the transistors can supply no more output voltage, resulting in a
leveling-off of a graph of output voltage.

During the search, Sprott also calculated what is known as the largest Lya-

punov exponent. The largest Lyapunov exponent is a fairly standard method to
check for chaos. The general idea of calculating the Lyapunov exponent is to
follow two close orbits, and calculate their average logarithmic rate of separa-
tion. The procedure is fairly simple, but will be omitted. If the reader wishes
to read more about the Lyapunov exponent, Sprott has a procedure available
electronically at http://sprott.physics.wisc.edu/chaos/lyapexp.htm. A positive
value for the largest Lyapunov exponent is generally indicative of chaotic behav-
ior. Sprott includes a table of various equations he tried, and their associated
largest Lyapunov exponent.

The largest Lyapunov exponent for Eq. (1) was found to be 0.036, which
indicates that this equation can exhibit chaotic behavior, provided proper initial
values of (0, 0, 0) for (ẍ, ẋ, x) respectively, and a proper value for the other
parameters, of which there is only A. In Sprott’s trials, he used a value of 0.6.
This value is adjusted by adjusting the variable resistor in the circuit, using
R =

(

1

A

)

≈ 1.67 Ω
As was noted above, the circuit did not work, so all efforts were shifted

towards the numeric simulation. In this simulation, we used a fourth-order
Runge-Kutta algorithm, to calculate each step of the function. To calculate the
y-value of the next iteration, using a step size of h, you first must calculate the
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values of k1 through k4, and then combine them with yn to produce yn+1:

k1 = f(tn, yn)

k2 = f(tn + h

2
, yn + h

2
k1)

k3 = f(tn + h

2
, yn + h

2
k2)

k4 = f(tn + h, yn + h k3)

yn+1 = yn + h

6
(k1 + 2k2 + 2k3 + k4)

We ran our simulation for 100,000 iterations, with h = 0.001. The simulation
made a plot of ẋ vs. x for various values of the variable resistor R. In the images
below, the axes are labeled V̇ and V for voltage.

In his paper, Sprott indicated that this circuit/equation would only exhibit
chaotic behavior if the value of A was ‘valid’. Since the value for A is determined
by the variable resistor R, we wanted to see what values of R would produce
chaotic behavior, and which values of R would produce either divergent or con-
vergent behavior. The values of R that we wanted to see were values of R for
which the values of ẋ and x would form a closed path. Here are a few samples
of the output from the numeric simulation:

Figure 1: Two examples of divergent behavior

Figure 2: Two examples of closed paths
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Figure 3: Two sparse closed loops

Figure 4: One loop and a converging solution

A computer animation of the evolution of the solution, as R is increased
from 0.50 to 1.15 in increments of 0.01, is available electronically at:
http://www.tc.umn.edu/ beck0778/videos/chaotic circuit video.avi.

5 Interpretation of Graphs

In Figure 1, the graph of R = 0.500 is the initial graph of the system. You
can see that the solution leaves the localized area, and diverges to infinity. The
same is true for all R until 0.550, in Figure 2. Here, this is the first time that the
solution to the equation has not diverged outwards, but instead has been trapped
in a loop. When we let this simulation run for an extended period of time, the
curve did not move, indicating that these loops are the actual solution, and not
just a byproduct of numeric approximation. Throughout the range of R-values
for which the solution is bounded in a closed loop, there is a great variety of
interesting shapes. This shows how a small change in an initial condition, here
R, can have a large effect on the end result of the system. This is yet another
indication that this system exhibits chaotic behavior. In the rightmost graph
of Figure 2, you can see how dense the loops are, especially when compared to
the relatively sparse loops in Figure 3. Between R = 0.770 and R = 1.005, the
radius of the main loop decreases until it arrives at the size when R = 1.005. It
appears that R = 1.005 is the other critical value, because for any R > 1.005,
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the solution converges to a point on the V-axis, as can be seen by the rightmost
graph of Figure 4.

6 Error Attribution

There are two possible sources for errors in our numeric simulation. The first
type of error is called Roundoff error, and is the error associated with the
computer’s limitation on storage of floating-point numbers. Since computers
have a limited amount of memory, some truncation must occur. On a typical
32 bit computer, using a mathematical oriented program, such as Mathematica,
Maple, or MATLAB, floating point numbers are usually stored in an 8-byte
double-precision floating point variable. This means that the variable will have
a 52-bit mantissa, which translates into a precision of 2−52 = 2.22 · 10−16. This
is very small compared to the actual values we are working with. However, there
is always the possibility that these very small errors can accumulate over many
millions of iterations.

The other general type of error when using computers to do numeric sim-
ulations is called Truncation error, and is caused by using a finite number of
steps in a calculation that requires an infinite number of steps to do exactly.
In our simulation, the truncation error is introduced because we cannot use an
infinitely small step size, and are therefore making a finite approximation to the
solution. Since we are still using a relatively small step size (0.001), this error
is quite small.

Another factor to consider is the choice of the numeric integration algorithm.
As stated before, we used a fourth-order Runge-Kutta algorithm, which is much
more accurate than Euler’s Method. When comparing the error with various
numeric methods, it is important to realize that any truncation error made, no
matter how small, can be exponentially magnified in certain cases, leading to
inaccurate results. For Euler’s method, the Error is approximately proportional
to the first power of the step size (Eh ≈ λh1)). The second-order Runge-Kutta
method has Eh ≈ λh2. The presence of the power of two on the step size
is how this method got the name ‘second order’. The method that we used in
our simulation, the fourth-order Runge-Kutta method, has Eh ≈ λh4, hence the
name, ‘fourth order’. Due to the differing error estimates, using the fourth-order
Runge-Kutta method will have about 1

1000
the error of Euler’s Method.
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