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1 Introduction

In the 18th and 19th centuries, many mathematicians worked extensively on what is known
as the ‘Restricted Three-Body Problem,’ which is a simplification of the general three-body
problem. The aim of the three-body problem is to describe the motions of three planetary
bodies, but is impossible to solve analytically. The restriction assumes that the mass of
one of the bodies is negligible, such as the mass of a satelite compared to the masses of the
earth and moon. In 1777, an Italian mathematician named Joseph Lagrange hypothesized
how that restricted third body would interact with the other two bodies. He discovered
distinct points in the orbit where the third body would orbit at a relatively stationary
position compared to the other two. These points were later named Lagrange points in
his honor.

In this lab, we created a computer simulation to observe and quantitize the behavior
of objects placed at these Lagrange points. We investigated the overall stability of the
five Lagrange points, and also the effect of the ratio of the masses of the larger two bodies
on the stability of the orbits.

2 Predictions

There are five Lagrange points, enumerated L1-L5:

• L1 lies between the earth and the moon

• L2 lies outside the moon’s orbit directly behind it

• L3 lies on the other side of the earth from the moon

• L4 is at the same radius as the moon, but 60◦ ahead of the moon

• L5 is the same as L4, but 60◦ behind the moon.

According to Lagrange’s calculations, L1, L2, L3 are known as unstable, because a satelite
placed there will gradually drift away, and require an adjustment to return to the point.
L4 and L5 are known as stable points. We will investigate this assertion in the lab. It
has been calculated that there is a minimum ratio of the masses of the two larger bodies



that affects the stability of points L4 and L5. This required ratio is approximately 24.96.
Supposedly, if the value is lower than 24.96, none of the Lagrangian points are stable. We
are most interested in determining the validity of this statement, by changing the mass
of the moon, and observing the resultant behavior, both visually and numerically. The
points can be visualized in the following figure:

Figure 1: Lagrange Points in the Earth-Moon System

3 Description of Experiment

We started by playing around with the binary star simulation included with the visu-
alpython module. I modified the sample simulation, adding the capability to output the
system data, after every iteration, to a file located on the hard disk. This allowed us to
import the tens of thousands of data points into a spreadsheet without having to man-
ually key them into the computer. The original simulation had the rate of simulation
reduced as to allow for easier viewing of the behavior by the operator. Since we only
needed the data points, I essentially removed the rate limitation. This had no effect on
the data collected, because it only increased the speed with which we could simulate and
collect data points. We obtained standard astronomical values for the earth and moon,
which is sumarized at the end of this section. For each iteration of the simulation, the
distances between each pair of objects was calculated. The Law of Universal Gravitation
was used to find the force between each pair of objects. The force was converted into
an impulse, which was applied to the momentum of the bodies. Their positions were
updated to reflect the change in momentum, and the simulation proceeded to the next
iteration. To investigate the stability ofthe orbits, with the actual astronomical values,



we created a satellite at each Lagrange point in turn, calculating the position and initial
velocity beforehand. We then recorded the X and Y coordinates for every iteration of
the simulation. For each Lagrange point, we recorded 32,000 data points in X and Y.
This is equivalent to 31212702.59 seconds, which is just under one year (361.25 days).
Each iteration of our simulation was the equivalent of 975.427438 seconds, which is 16.25
minutes. We plotted the data to ascertain any regular harmonic motion, which would be
indicitive of a stable orbit.

To determine the effect of the planetary mass ratio, we used the same Lagrange point
(L4) each time, but changed the mass of the moon each time. We recorded data for four
different ratios. For all of the experiments, Me = 5.9736 · 1024 kg, and the mass of the
satellite, Ms = 10 kg.

Experiment 1.1 Point L1, Mm = 7.347673 · 1022 kg

Experiment 1.2 Point L2, Mm = 7.347673 · 1022 kg

Experiment 1.3 Point L3, Mm = 7.347673 · 1022 kg

Experiment 1.4 Point L4, Mm = 7.347673 · 1022 kg

Experiment 1.5 Point L5, Mm = 7.347673 · 1022 kg

Experiment 2.1 Point L4, Mm = 8.54 · 1022 kg, ratio = 70

Experiment 2.2 Point L4, Mm = 1.49 · 1023 kg, ratio = 40

Experiment 2.3 Point L4, Mm = 1.99 · 1023 kg, ratio = 30

Experiment 2.4 Point L4, Mm = 2.40 · 1023 kg, ratio = 24.96

Standard Astronomical Data:

Mass of Earth = 5.9736 · 1024 kg

Radius of Earth = 25512560 m

Mass of Moon = 7.347673 · 1022 kg

Radius of Moon = 6952400 m

Orbital Radius of Moon = 384400000 m

Orbital Velocity of Moon = 1022m
s



4 Data

Please note that the data tables presented only represent a small fraction of our data.
We collected 1 data point every 16.25 minutes, for a total of 32,000 data points per table,
which would be too many to print here. Also, the values measured and recorded are the
values of the x and y coordinates, measured in meters. Time is measured in seconds.

The data in this first section is from the standard planetary masses, for all five Lagrange
points. The data is presented first, followed by a data chart and visualization for each
trial.

Experiment 1.1: Experiment 1.2:
Point L1, Standard Masses Point L2, Standard Masses

Time X Y Time X Y
0.00 326378400.00 0.00 0.00 447677100.00 0.00

975.43 326376105.10 867738.62 975.43 447673873.48 1190234.12
1950.85 326371515.28 1735470.99 1950.85 447667420.42 2380459.61
2926.28 326364630.57 2603190.87 2926.28 447657740.83 3570667.83
3901.71 326355450.98 3470892.01 3901.71 447644834.73 4760850.14
4877.14 326343976.58 4338568.17 4877.14 447628702.17 5950997.91
5852.56 326330207.41 5206213.09 5852.56 447609343.22 7141102.51
6827.99 326314143.57 6073820.54 6827.99 447586757.96 8331155.31
7803.42 326295785.16 6941384.26 7803.42 447560946.50 9521147.65
8778.85 326275132.30 7808898.02 8778.85 447531908.96 10711070.92

Experiment 1.3: Experiment 1.4:
Point L3, Standard Masses Point L4, Standard Masses

Time X Y Time X Y
0.00 -381632000.00 0.00 0.00 192200000.00 -332900165.22

975.43 -381629243.58 -1014640.75 975.43 193083740.32 -332386790.65
1950.85 -381623730.73 -2029274.26 1950.85 193966136.57 -331871044.96
2926.28 -381615461.46 -3043893.30 2926.28 194847182.32 -331352931.59
3901.71 -381604435.79 -4058490.62 3901.71 195726871.16 -330832454.03
4877.14 -381590653.77 -5073058.98 4877.14 196605196.67 -330309615.75
5852.56 -381574115.45 -6087591.16 5852.56 197482152.46 -329784420.28
6827.99 -381554820.91 -7102079.91 6827.99 198357732.14 -329256871.13
7803.42 -381532770.24 -8116517.99 7803.42 199231929.32 -328726971.85
8778.85 -381507963.57 -9130898.16 8778.85 200104737.64 -328194726.00

Experiment 1.5:
Point L5, Standard Masses

Time X Y
0.00 192200000.00 332900165.22

975.43 191313584.40 333408790.65
1950.85 190425837.58 333915038.07
2926.28 189536765.97 334418904.03
3901.71 188646376.03 334920385.11
4877.14 187754674.18 335419477.92
5852.56 186861666.90 335916179.08
6827.99 185967360.65 336410485.21
7803.42 185071761.90 336902392.97
8778.85 184174877.13 337391899.03



The data in this section is from the four trials with a variable lunar mass. In each data
table and chart, the actual lunar mass and subsequent ratio is displayed. Once again, the
data is presented first, followed by charts and visualizations.

Experiment 2.1: Point L4 Experiment 2.2: Point L4
Mm = 8.54 · 1022 kg, ratio = 70 Mm = 1.49 · 1023 kg, ratio = 40

Time X Y Time X Y
0.00 192200000.00 -332900165.22 0.00 192200000.00 -332900165.22

975.43 193083743.01 -332386785.99 975.43 193083757.52 -332386760.86
1950.85 193966144.61 -331871030.96 1950.85 193966187.97 -331870955.43
2926.28 194847198.34 -331352903.54 2926.28 194847284.72 -331352752.21
3901.71 195726897.74 -330832407.19 3901.71 195727041.16 -330832154.53
4877.14 196605236.39 -330309545.38 4877.14 196605450.67 -330309165.72
5852.56 197482207.85 -329784321.58 5852.56 197482506.66 -329783789.12
6827.99 198357805.70 -329256739.30 6827.99 198358202.52 -329256028.12
7803.42 199232023.52 -328726802.06 7803.42 199232531.68 -328725886.10
8778.85 200104854.91 -328194513.40 8778.85 200105487.54 -328193366.48

Experiment 2.3: Point L4 Experiment 2.4: Point L4
Mm = 1.99 · 1023 kg, ratio = 30 Mm = 2.40 · 1023 kg, ratio = 24.96

Time X Y Time X Y
0.00 192200000.00 -332900165.22 0.00 192200000.00 -332900165.22

975.43 193083768.81 -332386741.31 975.43 193083778.08 -332386725.26
1950.85 193966221.70 -331870896.68 1950.85 193966249.40 -331870848.43
2926.28 194847351.92 -331352634.51 2926.28 194847407.10 -331352537.85
3901.71 195727152.71 -330831958.01 3901.71 195727244.32 -330831796.62
4877.14 196605617.34 -330308870.41 4877.14 196605754.22 -330308627.91
5852.56 197482739.07 -329783374.97 5852.56 197482929.94 -329783034.87
6827.99 198358511.18 -329255474.96 6827.99 198358764.65 -329255020.69
7803.42 199232926.93 -328725173.66 7803.42 199233251.51 -328724588.58
8778.85 200105979.61 -328192474.38 8778.85 200106383.70 -328191741.77



5 Results & Analysis

Based on the data we obtained, and the charts that we created, we decided that the
Lagrange points P1, P2, and P3 really are unstable, especially compared to the stability
showcased by points L4 and L5. While some people may argue that an orbit that changes
to an eliptical orbit closer to the earth is stable, we decideded, given our original definitions
of stability, that the satellite needed to stay in the same spot relative to the earth and
moon to be considered stable. Therefore, only L4 and L5 are stable Lagrange points.
This conclusion is only valid for the actual masses of the earth and moon, as our further
experiments showed. While the critical mass-ratio of 24.96 showed a spectactular ejection
of the satellite from the system, the simulations when the ratio was 30 and 40 shows that
the orbit exhibits instability even at those higher ratios.

6 Error Attribution

As was stated in the lab introduction, neither the general nor restricted three body prob-
lem has been solved analytically. Therefore we had to resort to calculating the forces
between each pair of the three bodies as described in the experiment description. When
using the computer to numerically approximate the velocities and position involved, error
must be introduced. Also, we set the simulation to iterate by 16 minutes per iteration,
which may seem to be a long time between steps, but the overall timeframe of the sim-
ulation (one year), 16 minute chunks are minimal. Ideally, we would be able to handle
and work with data with an even higher resolution, perhaps by simulation every minute
or every second, however the limitations of our minds to handle such an huge quantity
(hundereds of thousands, to millions) of pieces of data was an important factor, as well
as the computer’s ability to update the chart of points in realtime, when dealing with
that many points. As it was, one year worth of iterations produced 32,000 data points,
which was the maximum number of data points allowed in the spreadsheet application’s
charting feature.

7 Estimating Uncertainties

Estimating the uncertainties and error is different for this lab report, because we were
unable to actually use a real-world experiment. As mentioned in the previous section,
the forces, positions, and velocities involved must be numberically approximated by the
computer, and this adds a very small amount of error. However,since the computer is able
to use approximately 15 decimal digits through all calculations, the error is negligible. If
we were going to try and fit an equation to our data, we would perhaps want to use more
points for a higher resolution. However, on the graphs contained in this document, the
data points are so closely spaced that they look more like a smooth curve than a collection
of unique points. For the purposes of this lab report, the accuracy that we obtained is
more than enough.



8 Conclusion

In the course of our numeric simulation, we affirmed many aspects of our prediction.
The Lagrange points L1, L2, and L3 are unstable, and L4 and L5 are stable. The only
area in which we were slight mistaken was in the critical value of the mass-ratio needed
to de-stabilize the orbits of L4 and L5. We had initially thought that the orbits would
degenerate almost unnoticibly until the critical ratio was reached, but as our data and
graphs showed, the degeneration of the orbits at L4 and L5 started fairly quickly, with
very noticible changes occuring with a ratio as high as 40. This is evident in the smaller
eliptical orbit that the satellite enters when the ratio is 40, and the large, nearly escaping
elipse when the ratio is 30.


