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1 Introduction

When studying systems of motion in the real world, a common catchphrase is ‘chaotic

motion’. Many people use this term to describe the seeming random behavior of some-
times surprisingly simple objects. An easily created example of this type of system is
a double pendulum system, which consists of a pair of rods, the upper rod connected
to a fixed point, the lower rod connected only to the upper, that are free to swing.
We investigated the chaotic motion of this system, the effect that changes in the ini-
tial conditions had in the end result, and methods of mathematically representing the
pendulums.

2 Predictions

With a normal pendulum, a small change in the initial angle will only change the final
(after a set amount of time) angle by approximately the same result. In other words, a
linear change in an initial condition will produce a linear change in the resulting motion.
With the introduction of a second pendulum, all of our intuition must be disregarded.
In the chaotic motion exhibited by the double pendulum system, we predict that a
small change will result in two completely different behaviors. We expect this change
to become visible almost immediately after starting the system.

3 Description of Experiments

Since we did not have access to a double pendulum system, we decided to make modi-
fications to the basic two pendulum simulation that is provided with the visualpython
module. We decided that it would make more sense to have the masses and length of
each pendulum the same. The two factors that we chose to study were the two angles,
θ1 and θ2. See Figure 1.

We conducted essentially two experiments, the first exploring the end result of
the system when only θ1 was changing, and the second when only θ2 was changing.
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Figure 1: Double Pendulum System

When we finished with those two experiments, we decided we wanted to investigate the
results over a longer time period when θ1 or θ2 was changed very slightly. We present
the results of these longer period experiments after the original experiments

I modified the sample simulation, adding the capability to output the status of
the pendulum system, after every iteration, to a file located on the hard disk. This
allowed us to import thousands of data points into a spreadsheet without ever having
to manually key them into the computer. The original simulation had the rate of
simulation reduced as to allow for easier viewing of the behavior by the operator.
Since we only needed the data points, I essentially removed the rate limitation. This
had no effect on the data collected, because it only increased the speed with which we
could simulate and collect data points.

Experiment 1 θ1 = {1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3}, θ2 = 0, 0 < t < 15

Experiment 2 θ1 = 2, θ2 = {0.2, 0.225, 0.25, 0.275, 0.3}, 0 < t < 10

Experiment 3 θ1 = {1.7, 1.71}, θ2 = 0, 0 < t < 30

Experiment 4 θ1 = 2, θ2 = {0.25, 0.2505}, 0 < t < 30
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4 Data

Please note that the data tables presented only represent a small fraction of our data.
We collected 100 data points per second, for a total of 1,000 to 3,000 points per table,
which would be too many to print here. Also, the values measured and recorded are
the values of θ1. Angle measurements are in radians, and time measurements are in
seconds.

Experiment 1: θ1 variable, θ2 = 0
Time θ1 = 1.7 θ1 = 1.8 θ1 = 1.9 θ1 = 2.0 θ1 = 2.1 θ1 = 2.2 θ1 = 2.3
0.01 1.70 1.80 1.90 2.00 2.10 2.20 2.30
0.02 1.70 1.80 1.90 2.00 2.10 2.20 2.30
0.03 1.69 1.79 1.89 1.99 2.09 2.19 2.29
0.04 1.68 1.78 1.88 1.99 2.09 2.19 2.29
0.05 1.68 1.78 1.88 1.98 2.08 2.18 2.28
0.06 1.66 1.77 1.87 1.97 2.07 2.17 2.27
0.07 1.65 1.75 1.85 1.96 2.06 2.16 2.26
0.08 1.64 1.74 1.84 1.94 2.05 2.15 2.25
0.09 1.62 1.72 1.82 1.93 2.03 2.14 2.24
0.10 1.60 1.70 1.81 1.91 2.02 2.12 2.23

Figure 2: θ1 Multiple Lines
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Experiment 2: θ1 = 2, θ2 variable
Time θ2 = 0.2 θ2 = 0.225 θ2 = 0.25 θ2 = 0.275 θ2 = 0.3
9.90 -0.60 -0.60 -1.39 1.39 1.26
9.91 -0.65 -0.66 -1.35 1.37 1.28
9.92 -0.69 -0.73 -1.30 1.36 1.29
9.93 -0.73 -0.79 -1.25 1.34 1.31
9.94 -0.77 -0.85 -1.20 1.32 1.32
9.95 -0.81 -0.91 -1.14 1.30 1.33
9.96 -0.85 -0.97 -1.08 1.28 1.33
9.97 -0.89 -1.03 -1.02 1.26 1.34
9.98 -0.92 -1.09 -0.96 1.23 1.34
9.99 -0.96 -1.14 -0.89 1.21 1.35

10.00 -0.99 -1.19 -0.83 1.18 1.35

Figure 3: θ2 Multiple Lines
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We wanted to investigate the long-term behavior with small changes in the initial
conditions. The results of these two experiments are below.

Experiment 3:

θ1 = 2, θ2 = {1.7, 1.71}
Time θ2 = 1.7 θ2 = 1.71
29.91 0.00 -1.20
29.92 0.01 -1.20
29.93 0.02 -1.20
29.94 0.03 -1.20
29.95 0.05 -1.19
29.96 0.06 -1.19
29.97 0.07 -1.18
29.98 0.08 -1.17
29.99 0.09 -1.16
30.00 0.10 -1.15

Figure 4: θ1 Two Lines - Long Duration
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Experiment 4:

θ1 = {0.25, 0.2505}, θ2 = 0
Time θ1 = 0.25 θ1 = 0.2505
29.90 -1.33 1.44
29.91 -1.31 1.46
29.92 -1.29 1.47
29.93 -1.26 1.49
29.94 -1.23 1.50
29.95 -1.20 1.51
29.96 -1.17 1.51
29.97 -1.13 1.52
29.98 -1.10 1.52
29.99 -1.06 1.52
30.00 -1.02 1.52

Figure 5: θ2 Two Lines - Long Duration
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5 Results & Analysis

Based on the data that we obtained, and the charts that we created using that data,
we decided that the double pendulum system really did exhibit chaotic motion. Since
part of our assignment was to understand the physics behind our simulation, here is
an explanation using Lagrangian mathematics.

The Lagrangian is an equation that relates the kinetic and potential energy of a
system. It is described as:

L(θ1, θ2, θ̇1, θ̇2) = T1 + T2 − V1 − V2 (1)

Where:

T1 = Kinetic energy of the first rod

T2 = Kinetic energy of the second rod

V1 = Potential energy of the first rod

V2 = Potential energy of the second rod

For the purposes of this explanation:

θ̇1 =
∂θ1

∂t
, θ̇2 =

∂θ2

∂t
, θ̈1 =

∂2θ1

∂t
, θ̈2 =

∂2θ2

∂t

If we decide that the potential energy is equal to zero at the top, then:

V1 = m1gy1, V2 = m2gy2

Using the diagram, a bit of trigonometry, we can write the cartesian coordinates of
the centers of mass of the two rods in terms of a, b, θ1, θ2. We can then combine these
expressions into our potential energy formulas to produce:

V1 = −m1g
a

2
cos θ1, V2 = −m2g(a cos θ1 +

b

2
cos θ2)

Now we can move on to find the kinetic energy. If we start with the standard for
of the kinetic energy of a rigid body:

KE =
1

2
mv2

cm
+

1

2
Icmω2

Using a large amount of messy algebra, many time derivatives, and a few trig
identities, we can find the kinetic energy of each rod:

T1 =
1

2
m1(

a2

4
θ̇1

2

) +
1

2
(

1

12
m2a

2)θ̇1

2

T2 =
1

2
m2(a

2θ̇1

2

+
b2

4
θ̇2

2

+ abθ̇1θ̇2 cos (θ1 − θ2)) +
1

2
(

1

12
m2b

2)θ̇2

2
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If we take the kinetic energies and potential energies from both rods, and plug them
back into the lagrangian (Equation 1), we get:

(
1

6
m1a

2 +
1

2
m2a

2)θ̇1

2

+
1

6
m2b

2θ̇2

2

+
1

2
m2abθ̇1θ̇2 cos (θ1 − θ2)+

+(
1

2
m1ga + m2ga) cos θ1 +

1

2
m2gb cos θ2

Using a bit more algebraic substitution and differientation with respect to time, we
get the following relationships:

(
1

3
m1a

2 + m2a
2)θ̈1 +

1

2
m2abθ̈2 cos (θ1 − θ2)−

−
1

2
m2abθ̇2

2

sin (θ1 − θ2) + (
1

2
m1ga + m2ga) sin θ = 0 (2)

1

3
m2b

2θ̈2 +
1

2
m2abθ̈1 cos (θ1 − θ2)−

−
1

2
m2abθ̇1

2

sin (θ1 − θ2) +
1

2
m2gb sin θ2 = 0 (3)

Since Equations 2 and 3 are nowhere near linear, it is very difficult to solve the
equations symbolically. Using the visualpython modules and the number crunching
ability of the computer, it is possible to numerically iterate the equations over a set time
interval. This is what we used to obtain all of our data, as well as the demonstration
at the end of our presentation.

6 Error Attribution

As mentioned in the previous section, the lagrangian equation for the two pendulum
system is nearly impossible to solve algebraically except for a select few special cases.
When using the computer to numerically approximate the angles and energies involved,
error must be introduced. Also, we set the simulation to iterate by thousandths of a
second, and we recorded the data every hundredth of a second. Ideally, we would
be able to handle and work with data with an even higher resolution, however the
limitations of our minds to handle hundereds of thousands of pieces of data was an
important factor, as well as the computer’s ability to update the chart of points in
realtime, when dealing with that many points.

7 Estimating Uncertainties

Estimating the uncertainties and error is different for this lab report, because we did
not actually use a real-world experiment. As mentioned in the previous section, the
lagrangian must be numberically approximated by the computer, and this adds a very
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small amount of error, but since the computer is able to use approximately 15 decimal
digits through all calculations, the error is negligible. If we were going to try and
fit a function to our data, we would perhaps want to use more points for a higher
resolution. However, on the graphs contained in this document, the data points are
so closely spaced that they look more like a smooth curve than a collection of unique
points. For the purposes of this lab report, the accuracy that we obtained is more than
enough.

8 Conclusion

In the course of our numeric simulation, we affirmed many aspects of our prediction.
The system does indeed exhibit chaotic motion, and small changed in the initial con-
ditions actually do produce very large and varied end results. The only area in which
we were slight mistaken was in the time duration that was required to produce a noti-
cible discrepancy between the two closely started pendulum systems. We had initially
thought that the difference would become evident quite quickly, but as our data and
graphs showed, the pendulums were relatively close for quite a while. This is evident
in the demonstration at the end of the presentation, where we simulate two double-
pendulums swinging at the same time, with the same upper pivot position.
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