
Human Response Timer

Matthew Beckler
beck0778@umn.edu

EE2361 Lab Section 007

March 29, 2006

Abstract

In this lab, we create a very useful application, a human response
timer. The user’s reaction time is measured as the duration between
observing a lit LED, and pressing a push-button switch. This duration is
accurately measured using Timer0, and the computed value is displayed on
two, 7-segment LED displays. When user error is encountered, customized
error codes help guide the user to productive operation.

Introduction

In an attempt to create a useful project, this human response timer has been
created. While working with timers, interrupts, and parallel I/O is not partic-
ularly new, the complexity of this project, and the way in which is combines all
three has some inherent challenges. We set up a finite state machine to control
the operation of the circuit. There are five states, with multiple paths between
some of the states. A global integer variable controls the current state. Timer
0 is used to provide a one millisecond clock in conjunction with the interrupt
handlers. In this lab, we will only be using the high-priority interrupt handler.
The random number generating routine has been recycled, but slightly modified
to produce integers between 1000 and 10000, which is used as the random wait
time (in milliseconds), before lighting the LED. The 7-segment display routine
has also been recycled, but modified to include a digit of E, for displaying coded
error messages.

Observations

For the scope of the main program, we have created a number of helper func-
tions. The void display(void) function has returned from previous labs. The
initial values of the digits are set to off. A digit for the letter E has been added,
to provide a method for displaying useful error codes. There are two error pos-
sibilities in this device, and they are enumerated E0 and E1. Other than these
small changes, the display() function is the same as before.

Since we are using interrupts in our program’s source code, a brief expla-
nation of the PIC microcontroller’s implimentation of interrupts is is necessary.
The microcontroller has the ability to use two classes of interrupts, known as
low-priority and high-priority interrupts. For most applications and devices,

1

only one class of interrupts is necessary. Under normal operation, the micro-
controller starts execution at program memory location 0. When interrupts
are in use, two additional addresses in program memory have special meaning.
When an interrupt occurs, the processor will jump the program counter to one
of two interrupt handlers, which are specific locations in program memory. The
high-priority interrupt handler starts at program memory location 0x8, and the
low-priority interrupt handler starts at program memory location 0x18. Nor-
mally, there is not enough space to store your complete interrupt handling code
in these locations, so a goto instruction is often used to branch somewhere
else in the program memory. In this experiment, we will only be using the
high-priority interrupts.

Nearly every microcontroller includes timing devices on-chip. The PIC18F452
is no exception, with a total of four timers available, with many features and
options to customize their operation. For this experiment, we will be using
the TIMER0 device. This is a 16-bit counter/timer, with internal/external clock
inputs, variable edge-detection settings, and an 8-bit programmable prescaler.
In 16-bit mode, Timer 0 has two registers that store the current count, TMR0L
and TMR0H. The high byte is latched, so reading/writing from/to TMR0L will do
the same operation between TMR0H(the latched register) and the actual register.
Another important feature of Timer 0 is the ability to pre-set the count to cus-
tomize the time to interrupt. This is done by loading the uppper byte of the
desired value into TMR0H, and writing the lower byte of the desired value into
TMR0L.

There are a number of options available for Timer 0; our timer is setup for
16-bit mode with a pre-scaler of 1. This is done by writing the value 0x80

into the T0CON register. We also must enable global interrupts and the Timer
0 interrupt. We will be loading a starting count of 60543 = 0xEC7F into the
TMR0 registers. We must load this value at the start of the program, as well as
every time an interrupt occurs. This value corresponds to a very accurate timer
period of 1 millisecond.

The output to the LED display is handled with PORTC for the 8 data lines,
and PORTD pins 0 & 1 for the digit select lines. We enable output for these
ports and clear their values at the start of the program. The LED is connected
to RB0, and the switch is connected to RB7;

On initial power-on, the device’s displays should be blank. When the switch
is first pressed, the device will wait a random amount of time, between 1 and 10
seconds. If the user presses the switch before the LED is turned on, the error
code E0 is displayed. When the device has waited the random amount, the LED
will be turned on. At this point, the device will start the timer on the response
time. If the users does not press the switch within the next 999 miliseconds,
the error code E1 is displayed. Assuming the user pushes the switch withing
999 miliseconds, the processor waits for 1 second before displaying the user’s
reaction time. The number displayed is only two digits, and the digits are simply
the most significant digits of the milisecond count.

A software-controlled finite state machine has been implimented for this
device. A global integer value is used to control the finite state machine. Here
is a summary of the states:

• STATE 0: Display digits, wait for button press, then proceed to state 1.

• STATE 1: Wait for button release, generate random wait time, then

2

proceed to state 2.

• STATE 2: Enable Timer0, wait for random time, or until premature
button press, which leads to state 5. If the random time expires, set the
LED and reset the timer to upward counting mode, then proceed to state
3.

• STATE 3: Wait for button press (go to state 5), or timer reaches 999
miliseconds (go to state 4); turn off LED.

• STATE 4: Wait one second to display results, update display digits, then
proceed to state 5;

• STATE 5: Display digits, wait for button release, then return to state 0;

Conclusion

Altogether, this is the first truly useful project we have created in this course.
It has summarized the implimentations of timers, counters, parallel I/O, and
multiplexed displays. The use of a finite state machine has helped to streamline
and compartmentalize the program’s code into easily tested and understood
sections. Program control flows logically from one state to the next depending
on the inputs to the processor.

3

Circuit Schematic

Figure 1: Circuit Schematic - Courtesy Professor Rennolet

4

FSM Flowchart

Figure 2: Flowchart for Finite State Machine

5

C Language Program

#include <p18f452.h>

#pragma config OSC=HSPLL, WDT=OFF, BOR=OFF, PWRT=ON

#define TVAL 60543

static unsigned volatile int state = 0;

static unsigned int wait = 0;

static unsigned int reaction = 0;

void low_isr(void);

void high_isr(void);

#pragma code high_isr_entry=0x8

void high_isr_entry(void)

{

_asm GOTO high_isr _endasm

}

#pragma code low_isr_entry=0x18

void low_isr_entry(void)

{

_asm GOTO low_isr _endasm

}

#pragma code

/* pragma for generating interrupt code */

#pragma interrupt high_isr

void high_isr(void)

{

//reset to one millisecond

TMR0H = TVAL >> 8;

TMR0L = TVAL & 255;

INTCONbits.T0IF = 0;

switch(state)

{

case 3:

reaction++;

break;

case 2:

case 4:

wait--;

break;

}

}

#pragma interrupt low_isr

6

void low_isr(void){}

static unsigned long int SEED_X = 521288629L;

static unsigned long int SEED_Y = 362436069L;

unsigned int random(void)

{

volatile unsigned float tempf = 0;

unsigned int tempi = 0;

static unsigned int a = 18000, b = 30903;

SEED_X = a*(SEED_X&65535) + (SEED_X>>16);

// requires 16X16 multiply, 32bit add

SEED_Y = b*(SEED_Y&65535) + (SEED_Y>>16);

// requires 16X16 multiply, 32bit add

tempi = ((SEED_X&65535) + (SEED_Y&65535))/2;

tempf = (unsigned float) tempi / (unsigned float) 65535; // 0 < temp < 1

tempf = tempf * 9000; // 0 < temp < 9000

tempf = tempf + 1000; // 1000 < temp < 10000

return (int) tempf;

}

static unsigned char values[] = {10, 10}; //start out ’off’

void display(void)

{

static unsigned char numbers[] =

{

0b00000011,

0b10011111,

0b00100101,

0b00001101,

0b10011001,

0b01001001,

0b01000001,

0b00011111,

0b00000001,

0b00001001,

0b11111111,

0b01100001

};

static unsigned char which = 0;

if (!which)

{

PORTDbits.RD0 = 0;

PORTC = numbers[values[0]];

PORTDbits.RD1 = 1;

}

7

else

{

PORTDbits.RD1 = 0;

PORTC = numbers[values[1]];

PORTDbits.RD0 = 1;

}

which = !which;

return;

}

void debounce(void)

{

unsigned int count = 0;

while (count < 0x2FFF)

{

display();

count++;

}

}

void main(void)

{

TRISC = 0;

TRISD = 0;

PORTC = 0;

PORTD = 0;

INTCON2bits.RBPU = 0;

TRISB = 0x80;

PORTBbits.RB0 = 1;

PORTBbits.RB1 = 1;

PORTBbits.RB2 = 1;

while (1)

{

switch (state)

{

case 0:

/* case 0 = wait for button press, debounce*/

while(PORTBbits.RB7 == 1)

{

display();

}

//turn off display:

values[0] = 10;

values[1] = 10;

debounce();

state = 1;

break;

8

case 1:

while(PORTBbits.RB7 == 0);

debounce();

wait = random(); // random generates integer from 1000 to 10000 ms

state = 2;

break;

case 2:

T0CON = 0x80; /* enable timer 0 16 bit op w prescaler = 1 */

INTCONbits.T0IF = 0;

INTCONbits.T0IE = 1;

INTCONbits.GIE = 1;

TMR0H = TVAL >> 8;

TMR0L = TVAL & 255;

while(PORTBbits.RB7 == 1 && wait > 0);

if(PORTBbits.RB7 == 0)

{

// Pushed the button prematurely = E0

T0CON = 0;

values[0] = 0;

values[1] = 11;

state = 5;

debounce();

}

else

{

//timer finished

PORTBbits.RB0 = 0;

TMR0H = TVAL >> 8;

TMR0L = TVAL & 255;

reaction = 0;

state = 3;

}

break;

case 3:

while (PORTBbits.RB7 == 1 && reaction < 999);

PORTBbits.RB0 = 1;

if(PORTBbits.RB7 == 0)

{

T0CON = 0;

debounce();

state = 4;

}

else

{

T0CON = 0;

9

//too slow = E1

values[0] = 1;

values[1] = 11;

state = 5;

}

break;

case 4:

//wait one second to display results

wait = 1000;

TMR0H = TVAL >> 8;

TMR0L = TVAL & 255;

T0CON = 0x80;

while (wait > 0);

values[0] = (reaction \% 100) / 10;

values[1] = reaction / 100;

state = 5;

break;

case 5:

//wait for button up

while(PORTBbits.RB7 == 0)

{

display();

}

debounce();

state = 0;

break;

}

}

}

10

